Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Environ Contam Toxicol ; 64(2): 235-42, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23138651

ABSTRACT

Thiol metabolism is the primary detoxification strategy by which rice plants tolerate arsenic (As) stress. In light of this, it is important to understand the importance of harmonised thiol metabolism with As accumulation and tolerance in rice plant. For this aim, tolerant (T) and sensitive (S) genotypes were screened from 303 rice (Oryza sativa) genotypes on exposure to 10 and 25 µM arsenite (As(III)) in hydroponic culture. On further As accumulation estimation, contrasting (13-fold difference) T (IC-340072) and S (IC-115730) genotypes were selected. This difference was further evaluated using biochemical and molecular approaches to understand involvement of thiolic metabolism vis-a-vis As accumulation in these two genotypes. Various phytochelatin (PC) species (PC(2), PC(3) and PC(4)) were detected in both the genotypes with a dominance of PC(3). However, PC concentrations were greater in the S genotype, and it was noticed that the total PC (PC(2) + PC(3 )+ PC(4))-to-As(III) molar ratio (PC-SH:As(III)) was greater in T (2.35 and 1.36 in shoots and roots, respectively) than in the S genotype (0.90 and 0.15 in shoots and roots, respectively). Expression analysis of several metal(loid) stress-related genes showed significant upregulation of glutaredoxin, sulphate transporter, and ascorbate peroxidase in the S genotype. Furthermore, enzyme activity of phytochelatin synthase and cysteine synthase was greater on As accumulation in the S compared with the T genotype. It was concluded that the T genotype synthesizes adequate thiols to detoxify metalloid load, whereas the S genotype synthesizes greater but inadequate levels of thiols to tolerate an exceedingly greater load of metalloids, as evidenced by thiol-to-metalloid molar ratios, and therefore shows a phytotoxicity response.


Subject(s)
Adaptation, Physiological/physiology , Arsenites/toxicity , Oryza/physiology , Soil Pollutants/toxicity , Sulfhydryl Compounds/metabolism , Aminoacyltransferases/metabolism , Gene Expression Regulation, Plant , Phytochelatins/metabolism
2.
J Plant Physiol ; 168(13): 1543-9, 2011 Sep 01.
Article in English | MEDLINE | ID: mdl-21507506

ABSTRACT

Iron (Fe) chlorosis is a common nutritional deficiency in fruit trees grown in calcareous soils. Grafting on tolerant rootstocks is the most efficient practice to cope with it. In the present work, three Prunus hybrid genotypes, commonly used as peach rootstocks, and one peach cultivar were cultivated with bicarbonate in the growth medium. Parameters describing oxidative stress and the metabolism of reactive nitrogen species were studied. Lower contents of nitric oxide and a decreased nitrosoglutathione reductase activity were found in the most sensitive genotypes, characterized by higher oxidative stress and reduced antioxidant defense. In the peach cultivar, which behaved as a tolerant genotype, a specifically nitrated polypeptide was found.


Subject(s)
Adaptation, Physiological/physiology , Bicarbonates/pharmacology , Iron/metabolism , Nitric Oxide/metabolism , Prunus/physiology , Reactive Nitrogen Species/metabolism , Antioxidants/metabolism , Chimera , Chlorophyll/metabolism , Fruit/drug effects , Fruit/genetics , Fruit/metabolism , Genotype , Hydrogen Peroxide/metabolism , Hydrogen-Ion Concentration , Iron Deficiencies , Oxidative Stress , Phenotype , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Prunus/drug effects , Prunus/genetics , Reactive Oxygen Species/metabolism , Soil , Stress, Physiological
3.
J Agric Food Chem ; 58(11): 6951-9, 2010 Jun 09.
Article in English | MEDLINE | ID: mdl-20450196

ABSTRACT

Organic wastes such as sewage sludge have been successfully used to increase crop productivity of horticultural soils. Nevertheless, considerations of the impact of sludges on vegetable and fruit quality have received little attention. Therefore, the objective of the present work was to investigate the impact of two sanitized sewage sludges, autothermal thermophilic aerobic digestion (ATAD) and compost sludge, on the growth, yield, and fruit quality of pepper plants ( Capsicum annuum L. cv. Piquillo) grown in the greenhouse. Two doses of ATAD (15 and 30% v/v) and three of composted sludge (15, 30, and 45%) were applied to a peat-based potting mix. Unamended substrate was included as control. ATAD and composted sludge increased leaf, shoot, and root dry matter, as well as fruit yield, mainly due to a higher number of fruits per plant. There was no effect of sludge on fruit size (dry matter per fruit and diameter). The concentrations of Zn and Cu in fruit increased with the addition of sewage sludges. Nevertheless, the levels of these elements remained below toxic thresholds. Pepper fruits from sludge-amended plants maintained low concentrations of capsaicin and dihydrocapsaicin, thus indicating low pungency level, in accordance with the regulations prescribed by the Control Board of "Lodosa Piquillo peppers" Origin Denomination. The application of sludges did not modify the concentration of vitamin C (ASC) in fruit, whereas the highest doses of composted sludge tended to increase the content of reduced (GSH) and oxidized (GSSG) glutathione, without change in the GSH/GSSG ratio. There were no effects of sludge on the transcript levels of enzymes involved in the synthesis of vitamin C, l-galactono-1,4-lactone dehydrogenase (GLDH) or in the ascorbate-glutathione cycle, ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), and glutathione reductase (GR). Results suggest that the synthesis and degradation of ASC and GSH were compensated for in most of the treatments assayed. The application of sanitized sludges to pepper plants can improve pepper yield without loss of food nutritional quality, in terms of fruit size and vitamin C, glutathione, and capsaicinoid contents.


Subject(s)
Capsicum/chemistry , Capsicum/growth & development , Refuse Disposal/methods , Sewage/chemistry , Agriculture , Ascorbic Acid/analysis , Ascorbic Acid/metabolism , Biomass , Capsicum/genetics , Capsicum/metabolism , Fruit/chemistry , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...