Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Biomed Res. Int. ; 2018(1267038): 1-10, out.8, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IPPROD, Sec. Est. Saúde SP | ID: biblio-1016544

ABSTRACT

Mouse lines selected for maximal (AIRmax) or minimal acute inflammatory reaction (AIRmin) were used to characterize the immune response and the influence of genetic background during pristane-induced arthritis (PIA). Susceptible AIRmax mice demonstrated exacerbated cellular profiles during PIA, with intense infiltration of lymphocytes, as well as monocytes/macrophages and neutrophils, producing higher levels of IL-1ß, IFN-γ, TNF-α, IL-10, total IgG3, and chemokines. Resistant AIRmin mice controlled cell activation more efficiently than the AIRmax during arthritis progression. The weight alterations of the spleen and thymus in the course of PIA were observed. Our data suggest that selected AIRmax cellular and genetic immune mechanisms contribute to cartilage damage and arthritis severity, evidencing many targets for therapeutic actions.


Subject(s)
Animals , Arthritis, Experimental , Acute-Phase Reaction , Mice, Transgenic
2.
J Immunol Res ; 2018: 1928405, 2018.
Article in English | MEDLINE | ID: mdl-30648118

ABSTRACT

Pristane-induced arthritis (PIA) in mice is an experimental model that resembles human rheumatoid arthritis, a chronic autoimmune disease that affects joints and is characterized by synovial inflammation and articular cartilage and bone destruction. AIRmax and AIRmin mouse lines differ in their susceptibility to PIA, and linkage analysis in this model mapped arthritis severity QTLs in chromosomes 5 and 8. miRNAs are a class of small RNA molecules that have been extensively studied in the development of arthritis. We analyzed miRNA and gene expression profiles in peritoneal cells of AIRmax and AIRmin lines, in order to evaluate the genetic architecture in this model. Susceptible AIRmax mice showed higher gene (2025 vs 1043) and miRNA (240 vs 59) modulation than resistant AIRmin mice at the onset of disease symptoms. miR-132-3p/212-3p, miR-106-5p, miR-27b-3p, and miR-25-3p were among the miRNAs with the highest expression in susceptible animals, showing a negative correlation with the expression of predicted target genes (Il10, Cd69, and Sp1r1). Our study showed that global gene and miRNA expression profiles in peritoneal cells of susceptible AIRmax and resistant AIRmin lines during pristane-induced arthritis are distinct, evidencing interesting targets for further validation.


Subject(s)
Arthritis, Experimental/genetics , Arthritis, Rheumatoid/genetics , MicroRNAs/genetics , Peritoneum/physiology , Animals , Arthritis, Experimental/chemically induced , Cells, Cultured , Disease Susceptibility , Female , Humans , Interleukin-10/genetics , Male , Mice , Mice, Mutant Strains , Peritoneum/pathology , Quantitative Trait Loci/genetics , Terpenes/administration & dosage , Transcriptome
3.
J Immunol Res, v. 2018, 1928405, dez. 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2647

ABSTRACT

Pristane-induced arthritis (PIA) in mice is an experimental model that resembles human rheumatoid arthritis, a chronic autoimmune disease that affects joints and is characterized by synovial inflammation and articular cartilage and bone destruction. AIRmax and AIRmin mouse lines differ in their susceptibility to PIA, and linkage analysis in this model mapped arthritis severity QTLs in chromosomes 5 and 8. miRNAs are a class of small RNA molecules that have been extensively studied in the development of arthritis. We analyzed miRNA and gene expression profiles in peritoneal cells of AIRmax and AIRmin lines, in order to evaluate the genetic architecture in this model. Susceptible AIRmax mice showed higher gene (2025 vs 1043) and miRNA (240 vs 59) modulation than resistant AIRmin mice at the onset of disease symptoms. miR-132-3p/212-3p, miR-106-5p, miR-27b-3p, and miR-25-3p were among the miRNAs with the highest expression in susceptible animals, showing a negative correlation with the expression of predicted target genes (Il10, Cd69, and Sp1r1). Our study showed that global gene and miRNA expression profiles in peritoneal cells of susceptible AIRmax and resistant AIRmin lines during pristane-induced arthritis are distinct, evidencing interesting targets for further validation.

4.
Biomed Res Int, v. 2018, 1267038, 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2605

ABSTRACT

Mouse lines selected for maximal (AIRmax) or minimal acute inflammatory reaction (AIRmin) were used to characterize the immune response and the influence of genetic background during pristane-induced arthritis (PIA). Susceptible AIRmax mice demonstrated exacerbated cellular profiles during PIA, with intense infiltration of lymphocytes, as well as monocytes/macrophages and neutrophils, producing higher levels of IL-1ß, IFN-?, TNF-a, IL-10, total IgG3, and chemokines. Resistant AIRmin mice controlled cell activation more efficiently than the AIRmax during arthritis progression. The weight alterations of the spleen and thymus in the course of PIA were observed. Our data suggest that selected AIRmax cellular and genetic immune mechanisms contribute to cartilage damage and arthritis severity, evidencing many targets for therapeutic actions.

5.
Mol Carcinog, v. 57, n. 6, p. 745-751, jun. 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2509

ABSTRACT

Somatic KRAS mutations are common in human lung adenocarcinomas and are associated with worse prognosis. In mice, Kras is frequently mutated in both spontaneous and experimentally induced lung tumors, although the pattern of mutation varies among strains, suggesting that such mutations are not random events. We tested if the occurrence of Kras mutations is under genetic control in two mouse intercrosses. Codon 61 mutations were prevalent, but the patterns of nucleotide changes differed between the intercrosses. Whole genome analysis with SNPs in (A/J x C57BL/6)F4 mice revealed a significant linkage between a locus on chromosome 19 and 2 particular codon 61 variants (CTA and CGA). In (AIRmaxxAIRmin) F2 mice, there was a significant linkage between SNPs located on distal chromosome 6 (around 135Mbp) and the frequency of codon 61 mutation. These results reveal the presence of two loci, on chromosomes 6 and 19, that modulate Kras mutation frequency in different mouse intercrosses. These findings indicate that somatic mutation frequency and type are not simple random events, but are under genetic control.

6.
J Immunol Res ; 2018: 1928405, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15779

ABSTRACT

Pristane-induced arthritis (PIA) in mice is an experimental model that resembles human rheumatoid arthritis, a chronic autoimmune disease that affects joints and is characterized by synovial inflammation and articular cartilage and bone destruction. AIRmax and AIRmin mouse lines differ in their susceptibility to PIA, and linkage analysis in this model mapped arthritis severity QTLs in chromosomes 5 and 8. miRNAs are a class of small RNA molecules that have been extensively studied in the development of arthritis. We analyzed miRNA and gene expression profiles in peritoneal cells of AIRmax and AIRmin lines, in order to evaluate the genetic architecture in this model. Susceptible AIRmax mice showed higher gene (2025 vs 1043) and miRNA (240 vs 59) modulation than resistant AIRmin mice at the onset of disease symptoms. miR-132-3p/212-3p, miR-106-5p, miR-27b-3p, and miR-25-3p were among the miRNAs with the highest expression in susceptible animals, showing a negative correlation with the expression of predicted target genes (Il10, Cd69, and Sp1r1). Our study showed that global gene and miRNA expression profiles in peritoneal cells of susceptible AIRmax and resistant AIRmin lines during pristane-induced arthritis are distinct, evidencing interesting targets for further validation.

7.
Biomed Res. Int. ; 2018: 1267038, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15679

ABSTRACT

Mouse lines selected for maximal (AIRmax) or minimal acute inflammatory reaction (AIRmin) were used to characterize the immune response and the influence of genetic background during pristane-induced arthritis (PIA). Susceptible AIRmax mice demonstrated exacerbated cellular profiles during PIA, with intense infiltration of lymphocytes, as well as monocytes/macrophages and neutrophils, producing higher levels of IL-1ß, IFN-?, TNF-a, IL-10, total IgG3, and chemokines. Resistant AIRmin mice controlled cell activation more efficiently than the AIRmax during arthritis progression. The weight alterations of the spleen and thymus in the course of PIA were observed. Our data suggest that selected AIRmax cellular and genetic immune mechanisms contribute to cartilage damage and arthritis severity, evidencing many targets for therapeutic actions.

8.
Mol. Carcinog. ; 57(6): p. 745-51, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15268

ABSTRACT

Somatic KRAS mutations are common in human lung adenocarcinomas and are associated with worse prognosis. In mice, Kras is frequently mutated in both spontaneous and experimentally induced lung tumors, although the pattern of mutation varies among strains, suggesting that such mutations are not random events. We tested if the occurrence of Kras mutations is under genetic control in two mouse intercrosses. Codon 61 mutations were prevalent, but the patterns of nucleotide changes differed between the intercrosses. Whole genome analysis with SNPs in (A/J x C57BL/6)F4 mice revealed a significant linkage between a locus on chromosome 19 and 2 particular codon 61 variants (CTA and CGA). In (AIRmaxxAIRmin) F2 mice, there was a significant linkage between SNPs located on distal chromosome 6 (around 135Mbp) and the frequency of codon 61 mutation. These results reveal the presence of two loci, on chromosomes 6 and 19, that modulate Kras mutation frequency in different mouse intercrosses. These findings indicate that somatic mutation frequency and type are not simple random events, but are under genetic control.

9.
Inflamm Res ; 65(4): 313-23, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26820840

ABSTRACT

OBJECTIVE AND DESIGN: AIRmax and AIRmin mice differ in their local acute inflammatory reactions to polyacrylamide beads (Biogel). These lines were developed to identify genes that affect the intensity of the acute inflammatory response (AIR) and to investigate the cellular and molecular mechanisms of acute inflammation. Although these lines are well established, differences in their responses to chronic inflammatory Biogel exposure have not yet been described. We investigated whether the selective process that modified the acute inflammatory responses in these animals also affected the development of their chronic inflammatory responses. RESULTS: Inflammatory exudate cell infiltration was more intense in AIRmax than AIRmin mice at both 48 h and 30 days. Genes involved in signal transduction and immune/inflammatory responses were differentially expressed in the treated skin of AIRmax and AIRmin mice, and divergent expression of some acute inflammatory response genes was detected up to 30 days post-Biogel. However, distinct expression of several pro and anti-inflammatory response genes in both periods was observed. CONCLUSION: These results indicate that the selective process for acute inflammation affected the development of chronic inflammatory responses to Biogel, suggesting common genetic control.


Subject(s)
Acrylic Resins/pharmacology , Inflammation/genetics , Transcriptome/drug effects , Acute Disease , Animals , Chronic Disease , Cytokines/genetics , Cytokines/immunology , Female , Gels , Inflammation/immunology , Male , Mice , Oligonucleotide Array Sequence Analysis , Skin/drug effects , Skin/metabolism
10.
Inflamm. Res ; 65(4): p. 313-323, 2016.
Article | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib13803

ABSTRACT

AIRmax and AIRmin mice differ in their local acute inflammatory reactions to polyacrylamide beads (Biogel). These lines were developed to identify genes that affect the intensity of the acute inflammatory response (AIR) and to investigate the cellular and molecular mechanisms of acute inflammation. Although these lines are well established, differences in their responses to chronic inflammatory Biogel exposure have not yet been described. We investigated whether the selective process that modified the acute inflammatory responses in these animals also affected the development of their chronic inflammatory responses. Inflammatory exudate cell infiltration was more intense in AIRmax than AIRmin mice at both 48 h and 30 days. Genes involved in signal transduction and immune/inflammatory responses were differentially expressed in the treated skin of AIRmax and AIRmin mice, and divergent expression of some acute inflammatory response genes was detected up to 30 days post-Biogel. However, distinct expression of several pro and anti-inflammatory response genes in both periods was observed. These results indicate that the selective process for acute inflammation affected the development of chronic inflammatory responses to Biogel, suggesting common genetic control


Subject(s)
Cell Biology , Molecular Biology , Allergy and Immunology
11.
PLoS One ; 11(4): e0153090, 2016.
Article | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib13761

ABSTRACT

Envenomation by Loxosceles spider is characterized by the development of dermonecrosis. In previous studies, we have demonstrated that increased expression/secretion of matrix metalloproteinases 2 and 9, induced by Loxosceles intermedia venom Class 2 SMases D (the main toxin in the spider venom), contribute to the development of cutaneous loxoscelism. In the present study we show that the more potent venom containing the Class 1 SMase D from Loxosceles laeta, in addition to increasing the expression/secretion of MMP2 and MMP9, also stimulates the expression of MMP7 (Matrilysin-1), which was associated with keratinocyte cell death. Tetracycline, a matrix metalloproteinase inhibitor, prevented cell death and reduced MMPs expression. Considering that L. laeta venom is more potent at inducing dermonecrosis than L. intermedia venom, our results suggest that MMP7 may play an important role in the severity of dermonecrosis induced by L. laeta spider venom SMase D. In addition, the inhibition of MMPs by e.g. tetracyclines may be considered for the treatment of the cutaneous loxoscelism


Subject(s)
Toxicology , Allergy and Immunology , Biochemistry
14.
Braz. arch. biol. technol ; 54(6): 1203-1210, Nov.-Dec. 2011. ilus, graf
Article in English | LILACS | ID: lil-608442

ABSTRACT

The aim of the present study was to examine the effect of a diet rich in synthetic PEtn on the metabolism macrophages of tumor-bearing mice. The results demonstrated that PEtn increased the animals' survival time. In addition, the treated animals released smaller amounts of hydrogen peroxide (H2O2) and nitric oxide (NO) than the non-treated animals, particularly after day 14. From the results it could be concluded that H2O2 and NO were important in the modulation of neoplastic growth, and pointed to a promising role of PEtn in the control of human neoplasms.

15.
s.l; s.n; 2011. 7 p. ilus, graf.
Non-conventional in English | Sec. Est. Saúde SP, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1096109

ABSTRACT

The aim of the present study was to examine the effect of a diet rich in synthetic PEtn on the metabolism macrophages of tumor-bearing mice. The results demonstrated that PEtn increased the animals' survival time. In addition, the treated animals released smaller amounts of hydrogen peroxide (H2O2) and nitric oxide (NO) than the non-treated animals, particularly after day 14. From the results it could be concluded that H2O2 and NO were important in the modulation of neoplastic growth, and pointed to a promising role of PEtn in the control of human neoplasms.


Subject(s)
Animals , Mice , Phosphatidylethanolamines , Carcinoma, Ehrlich Tumor/drug therapy , Animals, Laboratory , Macrophages/drug effects , Carcinoma, Ehrlich Tumor/diet therapy , Carcinoma, Ehrlich Tumor/mortality
SELECTION OF CITATIONS
SEARCH DETAIL
...