Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
IEEE Trans Neural Netw Learn Syst ; 34(6): 2869-2881, 2023 06.
Article in English | MEDLINE | ID: mdl-34520371

ABSTRACT

Event-based neural networks are currently being explored as efficient solutions for performing AI tasks at the extreme edge. To fully exploit their potential, event-based neural networks coupled to adequate preprocessing must be investigated. Within this context, we demonstrate a 4-b-weight spiking neural network (SNN) for radar gesture recognition, achieving a state-of-the-art 93% accuracy within only four processing time steps while using only one convolutional layer and two fully connected layers. This solution consumes very little energy and area if implemented in event-based hardware, which makes it suited for embedded extreme-edge applications. In addition, we demonstrate the importance of signal preprocessing for achieving this high recognition accuracy in SNNs compared to deep neural networks (DNNs) with the same network topology and training strategy. We show that efficient preprocessing prior to the neural network is drastically more important for SNNs compared to DNNs. We also demonstrate, for the first time, that the preprocessing parameters can affect SNNs and DNNs in antagonistic ways, prohibiting the generalization of conclusions drawn from DNN design to SNNs. We demonstrate our findings by comparing the gesture recognition accuracy achieved with our SNN to a DNN with the same architecture and similar training. Unlike previously proposed neural networks for radar processing, this work enables ultralow-power radar-based gesture recognition for extreme-edge devices.


Subject(s)
Gestures , Neural Networks, Computer , Radar , Generalization, Psychological , Recognition, Psychology
2.
IEEE J Solid-State Circuits ; 57(10): 3058-3070, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36741239

ABSTRACT

This paper presents a bio-inspired event-driven neuromorphic sensing system (NSS) capable of performing on-chip feature extraction and "send-on-delta" pulse-based transmission, targeting peripheral-nerve neural recording applications. The proposed NSS employs event-based sampling which, by leveraging the sparse nature of electroneurogram (ENG) signals, achieves a data compression ratio of >125×, while maintaining a low normalized RMS error of 4% after reconstruction. The proposed NSS consists of three sub-circuits. A clockless level-crossing (LC) ADC with background offset calibration has been employed to reduce the data rate, while maintaining a high signal to quantization noise ratio. A fully synthesized spiking neural network (SNN) extracts temporal features of compound action potential signals consumes only 13 µW. An event-driven pulse-based body channel communication (Pulse-BCC) with serialized address-event representation encoding (AER) schemes minimizes transmission energy and form factor. The prototype is fabricated in 40-nm CMOS occupying a 0.32-mm2 active area and consumes in total 28.2 µW and 50 µW power in feature extraction and full diagnosis mode, respectively. The presented NSS also extracts temporal features of compound action potential signals with 10-µs precision.

3.
Front Neurosci ; 15: 664208, 2021.
Article in English | MEDLINE | ID: mdl-34093116

ABSTRACT

The development of brain-inspired neuromorphic computing architectures as a paradigm for Artificial Intelligence (AI) at the edge is a candidate solution that can meet strict energy and cost reduction constraints in the Internet of Things (IoT) application areas. Toward this goal, we present µBrain: the first digital yet fully event-driven without clock architecture, with co-located memory and processing capability that exploits event-based processing to reduce an always-on system's overall energy consumption (µW dynamic operation). The chip area in a 40 nm Complementary Metal Oxide Semiconductor (CMOS) digital technology is 2.82 mm2 including pads (without pads 1.42 mm2). This small area footprint enables µBrain integration in re-trainable sensor ICs to perform various signal processing tasks, such as data preprocessing, dimensionality reduction, feature selection, and application-specific inference. We present an instantiation of the µBrain architecture in a 40 nm CMOS digital chip and demonstrate its efficiency in a radar-based gesture classification with a power consumption of 70 µW and energy consumption of 340 nJ per classification. As a digital architecture, µBrain is fully synthesizable and lends to a fast development-to-deployment cycle in Application-Specific Integrated Circuits (ASIC). To the best of our knowledge, µBrain is the first tiny-scale digital, spike-based, fully parallel, non-Von-Neumann architecture (without schedules, clocks, nor state machines). For these reasons, µBrain is ultra-low-power and offers software-to-hardware fidelity. µBrain enables always-on neuromorphic computing in IoT sensor nodes that require running on battery power for years.

4.
Sensors (Basel) ; 20(12)2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32604829

ABSTRACT

Cardiovascular diseases (CVD) are often characterized by their multifactorial complexity. This makes remote monitoring and ambulatory cardiac rehabilitation (CR) therapy challenging. Current wearable multimodal devices enable remote monitoring. Machine learning (ML) and artificial intelligence (AI) can help in tackling multifaceted datasets. However, for clinical acceptance, easy interpretability of the AI models is crucial. The goal of the present study was to investigate whether a multi-parameter sensor could be used during a standardized activity test to interpret functional capacity in the longitudinal follow-up of CR patients. A total of 129 patients were followed for 3 months during CR using 6-min walking tests (6MWT) equipped with a wearable ECG and accelerometer device. Functional capacity was assessed based on 6MWT distance (6MWD). Linear and nonlinear interpretable models were explored to predict 6MWD. The t-distributed stochastic neighboring embedding (t-SNE) technique was exploited to embed and visualize high dimensional data. The performance of support vector machine (SVM) models, combining different features and using different kernel types, to predict functional capacity was evaluated. The SVM model, using chronotropic response and effort as input features, showed a mean absolute error of 42.8 m (±36.8 m). The 3D-maps derived using the t-SNE technique visualized the relationship between sensor-derived biomarkers and functional capacity, which enables tracking of the evolution of patients throughout the CR program. The current study showed that wearable monitoring combined with interpretable ML can objectively track clinical progression in a CR population. These results pave the road towards ambulatory CR.


Subject(s)
Cardiac Rehabilitation , Monitoring, Ambulatory/instrumentation , Remote Sensing Technology , Support Vector Machine , Wearable Electronic Devices , Female , Humans , Male , Middle Aged
5.
IEEE Trans Neural Netw Learn Syst ; 30(3): 644-656, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30047912

ABSTRACT

Convolutional neural networks (CNNs) have become the dominant neural network architecture for solving many state-of-the-art (SOA) visual processing tasks. Even though graphical processing units are most often used in training and deploying CNNs, their power efficiency is less than 10 GOp/s/W for single-frame runtime inference. We propose a flexible and efficient CNN accelerator architecture called NullHop that implements SOA CNNs useful for low-power and low-latency application scenarios. NullHop exploits the sparsity of neuron activations in CNNs to accelerate the computation and reduce memory requirements. The flexible architecture allows high utilization of available computing resources across kernel sizes ranging from 1×1 to 7×7 . NullHop can process up to 128 input and 128 output feature maps per layer in a single pass. We implemented the proposed architecture on a Xilinx Zynq field-programmable gate array (FPGA) platform and presented the results showing how our implementation reduces external memory transfers and compute time in five different CNNs ranging from small ones up to the widely known large VGG16 and VGG19 CNNs. Postsynthesis simulations using Mentor Modelsim in a 28-nm process with a clock frequency of 500 MHz show that the VGG19 network achieves over 450 GOp/s. By exploiting sparsity, NullHop achieves an efficiency of 368%, maintains over 98% utilization of the multiply-accumulate units, and achieves a power efficiency of over 3 TOp/s/W in a core area of 6.3 mm2. As further proof of NullHop's usability, we interfaced its FPGA implementation with a neuromorphic event camera for real-time interactive demonstrations.

6.
IEEE Trans Biomed Circuits Syst ; 12(1): 123-136, 2018 02.
Article in English | MEDLINE | ID: mdl-29377801

ABSTRACT

Applications requiring detection of small visual contrast require high sensitivity. Event cameras can provide higher dynamic range (DR) and reduce data rate and latency, but most existing event cameras have limited sensitivity. This paper presents the results of a 180-nm Towerjazz CIS process vision sensor called SDAVIS192. It outputs temporal contrast dynamic vision sensor (DVS) events and conventional active pixel sensor frames. The SDAVIS192 improves on previous DAVIS sensors with higher sensitivity for temporal contrast. The temporal contrast thresholds can be set down to 1% for negative changes in logarithmic intensity (OFF events) and down to 3.5% for positive changes (ON events). The achievement is possible through the adoption of an in-pixel preamplification stage. This preamplifier reduces the effective intrascene DR of the sensor (70 dB for OFF and 50 dB for ON), but an automated operating region control allows up to at least 110-dB DR for OFF events. A second contribution of this paper is the development of characterization methodology for measuring DVS event detection thresholds by incorporating a measure of signal-to-noise ratio (SNR). At average SNR of 30 dB, the DVS temporal contrast threshold fixed pattern noise is measured to be 0.3%-0.8% temporal contrast. Results comparing monochrome and RGBW color filter array DVS events are presented. The higher sensitivity of SDAVIS192 make this sensor potentially useful for calcium imaging, as shown in a recording from cultured neurons expressing calcium sensitive green fluorescent protein GCaMP6f.


Subject(s)
Color Perception , Image Processing, Computer-Assisted , Neuroimaging , Neurons/cytology , Optical Imaging , Animals , Cell Line , Image Processing, Computer-Assisted/instrumentation , Image Processing, Computer-Assisted/methods , Mice , Neuroimaging/instrumentation , Neuroimaging/methods , Neurons/metabolism , Optical Imaging/instrumentation , Optical Imaging/methods , Signal-To-Noise Ratio
7.
IEEE Trans Biomed Circuits Syst ; 9(5): 699-709, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26513801

ABSTRACT

Neural recording systems are a central component of Brain-Machince Interfaces (BMIs). In most of these systems the emphasis is on faithful reproduction and transmission of the recorded signal to remote systems for further processing or data analysis. Here we follow an alternative approach: we propose a neural recording system that can be directly interfaced locally to neuromorphic spiking neural processing circuits for compressing the large amounts of data recorded, carrying out signal processing and neural computation to extract relevant information, and transmitting only the low-bandwidth outcome of the processing to remote computing or actuating modules. The fabricated system includes a low-noise amplifier, a delta-modulator analog-to-digital converter, and a low-power band-pass filter. The bio-amplifier has a programmable gain of 45-54 dB, with a Root Mean Squared (RMS) input-referred noise level of 2.1 µV, and consumes 90 µW . The band-pass filter and delta-modulator circuits include asynchronous handshaking interface logic compatible with event-based communication protocols. We describe the properties of the neural recording circuits, validating them with experimental measurements, and present system-level application examples, by interfacing these circuits to a reconfigurable neuromorphic processor comprising an array of spiking neurons with plastic and dynamic synapses. The pool of neurons within the neuromorphic processor was configured to implement a recurrent neural network, and to process the events generated by the neural recording system in order to carry out pattern recognition.


Subject(s)
Biomedical Engineering/instrumentation , Brain-Computer Interfaces , Neurons/physiology , Neurosciences/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Acoustic Stimulation , Amplifiers, Electronic , Animals , Birds , Brain/physiology , Equipment Design
8.
Sci Rep ; 5: 14730, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26463272

ABSTRACT

Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a 'basin' of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases.


Subject(s)
Biomimetics/instrumentation , Image Interpretation, Computer-Assisted/instrumentation , Neural Networks, Computer , Photic Stimulation/instrumentation , Unsupervised Machine Learning , Visual Perception/physiology , Animals , Biomimetics/methods , Computer Systems , Equipment Design , Equipment Failure Analysis , Humans , Image Interpretation, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Photic Stimulation/methods , Signal Processing, Computer-Assisted/instrumentation
9.
Front Neurosci ; 9: 141, 2015.
Article in English | MEDLINE | ID: mdl-25972778

ABSTRACT

Implementing compact, low-power artificial neural processing systems with real-time on-line learning abilities is still an open challenge. In this paper we present a full-custom mixed-signal VLSI device with neuromorphic learning circuits that emulate the biophysics of real spiking neurons and dynamic synapses for exploring the properties of computational neuroscience models and for building brain-inspired computing systems. The proposed architecture allows the on-chip configuration of a wide range of network connectivities, including recurrent and deep networks, with short-term and long-term plasticity. The device comprises 128 K analog synapse and 256 neuron circuits with biologically plausible dynamics and bi-stable spike-based plasticity mechanisms that endow it with on-line learning abilities. In addition to the analog circuits, the device comprises also asynchronous digital logic circuits for setting different synapse and neuron properties as well as different network configurations. This prototype device, fabricated using a 180 nm 1P6M CMOS process, occupies an area of 51.4 mm(2), and consumes approximately 4 mW for typical experiments, for example involving attractor networks. Here we describe the details of the overall architecture and of the individual circuits and present experimental results that showcase its potential. By supporting a wide range of cortical-like computational modules comprising plasticity mechanisms, this device will enable the realization of intelligent autonomous systems with on-line learning capabilities.

10.
IEEE Trans Biomed Circuits Syst ; 8(5): 669-80, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25314706

ABSTRACT

The vestibular system plays a crucial role in the sense of balance and spatial orientation in mammals. It is a sensory system that detects both rotational and translational motion of the head, via its semicircular canals and otoliths respectively. In this work, we propose a real-time hardware model of an artificial vestibular system, implemented using a custom neuromorphic Very Large Scale Integration (VLSI) multi-neuron chip interfaced to a commercial Inertial Measurement Unit (IMU). The artificial vestibular system is realized with spiking neurons that reproduce the responses of biological hair cells present in the real semicircular canals and otholitic organs. We demonstrate the real-time performance of the hybrid analog-digital system and characterize its response properties, presenting measurements of a successful encoding of angular velocities as well as linear accelerations. As an application, we realized a novel implementation of a recurrent integrator network capable of keeping track of the current angular position. The experimental results provided validate the hardware implementation via comparisons with a detailed computational neuroscience model. In addition to being an ideal tool for developing bio-inspired robotic technologies, this work provides a basis for developing a complete low-power neuromorphic vestibular system which integrates the hardware model of the neural signal processing pathway described with custom bio-mimetic gyroscopic sensors, exploiting neuromorphic principles in both mechanical and electronic aspects.


Subject(s)
Hair Cells, Vestibular/physiology , Models, Neurological , Neurons/physiology , Vestibule, Labyrinth/physiology , Animals , Computational Biology , Electronics , Humans , Otolithic Membrane/physiology , Primates
SELECTION OF CITATIONS
SEARCH DETAIL
...