Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Faraday Discuss ; 190: 471-86, 2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27213190

ABSTRACT

Mixtures of trivalent metal halides with alkali halides are involved in many technologies but, from a more fundamental and general perspective, are worthy of study as interesting systems in which to examine the relationship between atomic-scale structure and physical properties. Here we examine the relationship between the viscosity and local and longer range structural measures in such mixtures where the trivalent metal cations span a significant size range and exhibit different behaviours in the dependence of their viscosity on the mixture composition. We characterise the structure and dynamics of the first coordination shell and the relationship between its structural relaxation time and the shear relaxation time of the mixture (the Maxwell relaxation time). We are then led to an examination of the structure of the networks which progressively form between the trivalent metal cations as their concentration increases in the mixtures. Here we find significant differences between small and larger cations, sufficient to explain the different behaviour of their viscosities. We draw attention to the similarities and differences of these networks with those which form in highly viscous, glass-forming materials like BeF2:LiF.

2.
Nat Chem ; 8(5): 454-60, 2016 05.
Article in English | MEDLINE | ID: mdl-27102679

ABSTRACT

The reactivity, speciation and solvation structure of CO2 in carbonate melts are relevant for both the fate of carbon in deep geological formations and for its electroreduction to CO (to be used as fuel) when solvated in a molten carbonate electrolyte. In particular, the high solubility of CO2 in carbonate melts has been tentatively attributed to the formation of the pyrocarbonate anion, C2O5(2-). Here we study, by first-principles molecular dynamics simulations, the behaviour of CO2 in molten calcium carbonate. We find that pyrocarbonate forms spontaneously and the identity of the CO2 molecule is quickly lost through O(2-) exchange. The transport of CO2 in this molten carbonate thus occurs in a fashion similar to the Grotthuss mechanism in water, and is three times faster than molecular diffusion. This shows that Grotthuss-like transport is more general than previously thought.

3.
J Chem Phys ; 144(10): 104507, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26979697

ABSTRACT

We use molecular dynamics simulations to study the thermodynamics, structure, and dynamics of the Li2CO3-K2CO3 (62:38 mol. %) eutectic mixture. We present a new classical non-polarizable force field for this molten salt mixture, optimized using experimental and first principles molecular dynamics simulations data as reference. This simple force field allows efficient molecular simulations of phenomena at long time scales. We use this optimized force field to describe the behavior of the eutectic mixture in the 900-1100 K temperature range, at pressures between 0 and 5 GPa. After studying the equation of state in these thermodynamic conditions, we present molecular insight into the structure and dynamics of the melt. In particular, we present an analysis of the temperature and pressure dependence of the eutectic mixture's self-diffusion coefficients, viscosity, and ionic conductivity.

4.
Sci Rep ; 5: 11553, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-26113411

ABSTRACT

A highly fluorinated anatase lattice has been recently reported, providing a new class of materials whose general chemical formula is Ti(1-x)□(x)X(4x)O(2-4x) (X(-) = F(-) or OH(-)). To characterise the complex structural features of the material and the different F environments, we here apply a computational screening procedure. After deriving a polarisable force-field from DFT simulations, we screen in a step-wise fashion a large number of possible configurations differing in the positioning of the titanium vacancies (□) and of the fluorine atoms. At each step only 10% of the configurations are retained. At the end of the screening procedure, a configuration is selected and simulated using DFT-based molecular dynamics. This allows us to analyse the atomic structure of the material, which is strongly disordered, leading to a strong decrease (by 0.8 eV) of the band gap compared to conventional anatase.

5.
J Phys Condens Matter ; 26(24): 244103, 2014 Jun 18.
Article in English | MEDLINE | ID: mdl-24862988

ABSTRACT

Classical molecular dynamics simulations are performed on LiF in the framework of the polarizable ion model. The overlap repulsion and polarization terms of the interaction potential are derived on a purely non-empirical, first-principles basis. For the dispersion, three cases are considered: a first one in which the dispersion parameters are set to zero and two others in which they are included, with different parametrizations. Various thermodynamic, structural and dynamic properties are calculated for the solid and liquid phases. The melting temperature is also obtained from direct coexistence simulations of the liquid and solid phases. Dispersion interactions appear to have an important effect on the densities of both phases and on the melting point, although the liquid properties are not affected when simulations are performed in the NVT ensemble at the experimental density.


Subject(s)
Fluorides/chemistry , Lithium Compounds/chemistry , Molecular Dynamics Simulation , Water/chemistry , Models, Theoretical , Molecular Structure , Surface Properties , Temperature , Thermodynamics
6.
Sci Rep ; 4: 4511, 2014 Mar 28.
Article in English | MEDLINE | ID: mdl-24676146

ABSTRACT

We present a new method to quantify differences in myelinated nerve fibers. These differences range from morphologic characteristics of individual fibers to differences in macroscopic properties of collections of fibers. Our method uses statistical physics tools to improve on traditional measures, such as fiber size and packing density. As a case study, we analyze cross-sectional electron micrographs from the fornix of young and old rhesus monkeys using a semi-automatic detection algorithm to identify and characterize myelinated axons. We then apply a feature selection approach to identify the features that best distinguish between the young and old age groups, achieving a maximum accuracy of 94% when assigning samples to their age groups. This analysis shows that the best discrimination is obtained using the combination of two features: the fraction of occupied axon area and the effective local density. The latter is a modified calculation of axon density, which reflects how closely axons are packed. Our feature analysis approach can be applied to characterize differences that result from biological processes such as aging, damage from trauma or disease or developmental differences, as well as differences between anatomical regions such as the fornix and the cingulum bundle or corpus callosum.


Subject(s)
Nerve Fibers, Myelinated/ultrastructure , Age Factors , Animals , Axons/physiology , Axons/ultrastructure , Cluster Analysis , Haplorhini , Nerve Fibers, Myelinated/classification
7.
Sci Rep ; 3: 1218, 2013.
Article in English | MEDLINE | ID: mdl-23390573

ABSTRACT

In order to investigate the cryoprotective mechanism of trehalose on proteins, we use molecular dynamics computer simulations to study the microscopic dynamics of water upon cooling in an aqueous solution of lysozyme and trehalose. We find that the presence of trehalose causes global retardation of the dynamics of water. Comparing aqueous solutions of lysozyme with/without trehalose, we observe that the dynamics of water in the hydration layers close to the protein is dramatically slower when trehalose is present in the system. We also analyze the structure of water and trehalose around the lysozyme and find that the trehalose molecules form a cage surrounding the protein that contains very slow water molecules. We conclude that the transient cage of trehalose molecules that entraps and slows the water molecules prevents the crystallisation of protein hydration water upon cooling.


Subject(s)
Muramidase/chemistry , Trehalose/chemistry , Water/chemistry , Cryopreservation , Molecular Dynamics Simulation , Muramidase/metabolism , Temperature
8.
J Chem Phys ; 137(18): 184503, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-23163379

ABSTRACT

We perform molecular dynamics computer simulations in order to study the equation of state and the structure of supercooled aqueous solutions of methanol at methanol mole fractions x(m) = 0.05 and x(m) = 0.10. We model the solvent using the TIP4P/2005 potential and the methanol using the OPLS-AA force field. We find that for x(m) = 0.05 the behavior of the equation of state, studied in the P - T and P - ρ planes, is consistent with the presence of a liquid-liquid phase transition, reminiscent of that previously found for x(m) = 0. We estimate the position of the liquid-liquid critical point to be at T = 193 K, P = 96 MPa, and ρ = 1.003 g/cm(3). When the methanol mole fraction is doubled to x(m) = 0.10 no liquid-liquid transition is observed, indicating its possible disappearance at this concentration. We also study the water-water and water-methanol structure in the two solutions. We find that down to low temperature methanol can be incorporated into the water structure for both x(m) = 0.05 and x(m) = 0.10.


Subject(s)
Methanol/chemistry , Molecular Dynamics Simulation , Molecular Structure , Solutions , Water/chemistry
9.
J Biol Phys ; 38(1): 97-111, 2012 Jan.
Article in English | MEDLINE | ID: mdl-23277673

ABSTRACT

The complex behavior of liquid water, along with its anomalies and their crucial role in the existence of life, continue to attract the attention of researchers. The anomalous behavior of water is more pronounced at subfreezing temperatures and numerous theoretical and experimental studies are directed towards developing a coherent thermodynamic and dynamic framework for understanding supercooled water. The existence of a liquid-liquid critical point in the deep supercooled region has been related to the anomalous behavior of water. However, the experimental study of supercooled water at very low temperatures is hampered by the homogeneous nucleation of the crystal. Recently, water confined in nanoscopic structures or in solutions has attracted interest because nucleation can be delayed. These systems have a tremendous relevance also for current biological advances; e.g., supercooled water is often confined in cell membranes and acts as a solvent for biological molecules. In particular, considerable attention has been recently devoted to understanding hydrophobic interactions or the behavior of water in the presence of apolar interfaces due to their fundamental role in self-assembly of micelles, membrane formation and protein folding. This article reviews and compares two very recent computational works aimed at elucidating the changes in the thermodynamic behavior in the supercooled region and the liquid-liquid critical point phenomenon for water in contact with hydrophobic environments. The results are also compared to previous reports for water in hydrophobic environments.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(6 Pt 1): 061504, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20866422

ABSTRACT

Jagla ramp particles, interacting through a ramp potential with two characteristic length scales, are known to show in their bulk phase thermodynamic and dynamic anomalies, similar to what is found in water. Jagla particles also exhibit a line of phase transitions separating a low density liquid phase and a high density liquid phase, terminating in a liquid-liquid critical point in a region of the phase diagram that can be studied by simulations. Employing molecular dynamics computer simulations, we study the thermodynamics and the dynamics of solutions of hard spheres (HS) in a solvent formed by Jagla ramp particles. We consider the cases of HS mole fraction xHS=0.10, 0.15, and 0.20, and also the case xHS=0.50 (a 1:1 mixture of HS and Jagla particles). We find a liquid-liquid critical point, up to the highest HS mole fraction; its position shifts to higher pressures and lower temperatures upon increasing xHS. We also find that the diffusion coefficient anomalies appear to be preserved for all the mole fractions studied.

SELECTION OF CITATIONS
SEARCH DETAIL
...