Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 35(9): e9046, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33434951

ABSTRACT

RATIONALE: The effort to make fake documents look real leads to the use of crickets and beverages to produce artificially aged papers, as land titles, based on yellowing caused by the use of these methods. An old practice in Brazil, called "cricketing", has led to the misappropriation of Brazilian land using these documents. We propose a rapid, simple, instantaneous and non-destructive method to identify artificially aged papers by easy ambient sonic-spray ionization mass spectrometry (EASI-MS) analysis. METHODS: Three typical aging procedures were used to obtain artificially aged papers using coffee, cola drink, and crickets, with the papers being analyzed by EASI-MS. Multivariate statistical analyses were performed on the data to find the sample groups and to study the most relevant ions of each ageing procedure. High-resolution MS (HRMS) was used to obtain the exact masses and attribute formulae to relevant ions present in the samples. RESULTS: The combination of EASI-MS and multivariate statistical analyses allowed us to identify the most relevant ions to classify the adulteration of documents and HRMS identified most of these relevant ions. TMS fingerprinting in combination with multivariate analysis also demonstrated that this approach can qualitatively differentiate all the examined paper samples. CONCLUSIONS: We developed a cheap, fast and easy method that can help to elucidate counterfeit documents that have been artificially aged, helping to identify chemical additives and one that can be used in forensic laboratories.

2.
Talanta ; 174: 628-632, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28738632

ABSTRACT

In this work, Raman hyperspectral imaging, in conjunction with independent component analysis, was employed as an analytical methodology to detect an ammonium nitrate fuel oil (ANFO) explosive in banknotes after an ATM explosion experiment. The proposed methodology allows for the identification of the ANFO explosive without sample preparation or destroying the sample, at quantities as small as 70µgcm-2. The explosive was identified following ICA data decomposition by the characteristic nitrate band at 1044cm-1. The use of Raman hyperspectral imaging and independent component analysis shows great potential for identifying forensic samples by providing chemical and spatial information.

3.
Appl Spectrosc ; 70(11): 1910-1915, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27324420

ABSTRACT

Energy-dispersive X-ray fluorescence (ED-XRF) spectroscopy with data treatment via chemometric tools was explored as an analytical protocol to discriminate between authentic and counterfeit revenue stamps. Untreated samples were directly analyzed, and the discrimination was based on the characterization of constituent elements present in the inks and paper. Authentic samples and samples that were suspected of being counterfeit were analyzed at three different areas on their surfaces: the ink-printed area, the non-printed area, and the holographic area. Principal component analysis (PCA) was applied to the data to discriminate between authentic and counterfeit revenue stamps. Major differences in the elemental composition were noted (according to chemometrics and t-test, p < 0.05), and ED-XRF spectroscopy plus PCA protocol is proposed for use by non-specialist operators to screen for counterfeit stamps.

4.
Forensic Sci Int ; 260: 22-26, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26784008

ABSTRACT

We describe the identification and limits of detection of ink staining by mass spectrometry imaging (MSI), as used in anti-theft devices (ATDs). Such ink staining is applied to banknotes during automated teller machine (ATM) explosions. Desorption electrospray ionization (DESI) coupled with high-resolution and high-accuracy orbitrap mass spectrometry (MS) and a moving stage device were applied to obtain 2D molecular images of the major dyes used for staining, that is, 1-methylaminoanthraquinone (MAAQ), rhodamine B (RB) and rhodamine 6G (R6G). MAAQ could not be detected because of its inefficient desorption by DESI from the banknote cellulose surface. By contrast, ATD staining on banknotes is perceptible by the human naked eye only at concentrations higher than 0.2 µg cm(-2), whereas both RB and R6G at concentrations 200 times lower (as low as 0.001 µg cm(-2)) could be easily detected and imaged by DESI-MSI, with selective and specific identification of each analyte and their spatial distribution on samples from suspects. This technique is non-destructive, and no sample preparation is required, which ensures sample preservation for further forensic investigations.

5.
Sci Justice ; 55(5): 285-90, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26385709

ABSTRACT

Using Brazilian banknotes as a test case, forensic examination and identification of Rhodamine B dye anti-theft device (ATD) staining on banknotes were performed. Easy ambient sonic spray ionization mass spectrometry (EASI-MS) was used since it allows fast and simple analysis with no sample preparation providing molecular screening of the surface with direct desorption and ionization of the security dye. For a more accurate molecular characterization of the ATD dye, Q Exactive Orbitrap™ Fourier transform (tandem) mass spectrometry using eletrospray ionization (ESI-HRMS/MS) was also applied.

6.
Forensic Sci Int ; 249: 156-64, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25700111

ABSTRACT

Ammonium nitrate fuel oil (ANFO) is an explosive used in many civil applications. In Brazil, ANFO has unfortunately also been used in criminal attacks, mainly in automated teller machine (ATM) explosions. In this paper, we describe a detailed characterization of the ANFO composition and its two main constituents (diesel and a nitrate explosive) using high resolution and accuracy mass spectrometry performed on an FT-ICR-mass spectrometer with electrospray ionization (ESI(±)-FTMS) in both the positive and negative ion modes. Via ESI(-)-MS, an ion marker for ANFO was characterized. Using a direct and simple ambient desorption/ionization technique, i.e., easy ambient sonic-spray ionization mass spectrometry (EASI-MS), in a simpler, lower accuracy but robust single quadrupole mass spectrometer, the ANFO ion marker was directly detected from the surface of banknotes collected from ATM explosion theft.

7.
Sci Justice ; 54(6): 459-64, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25498934

ABSTRACT

Using a desorption/ionization technique, easy ambient sonic-spray ionization coupled to mass spectrometry (EASI-MS), documents related to the 2nd generation of Brazilian Real currency (R$) were screened in the positive ion mode for authenticity based on chemical profiles obtained directly from the banknote surface. Characteristic profiles were observed for authentic, seized suspect counterfeit and counterfeited homemade banknotes from inkjet and laserjet printers. The chemicals in the authentic banknotes' surface were detected via a few minor sets of ions, namely from the plasticizers bis(2-ethylhexyl)phthalate (DEHP) and dibutyl phthalate (DBP), most likely related to the official offset printing process, and other common quaternary ammonium cations, presenting a similar chemical profile to 1st-generation R$. The seized suspect counterfeit banknotes, however, displayed abundant diagnostic ions in the m/z 400-800 range due to the presence of oligomers. High-accuracy FT-ICR MS analysis enabled molecular formula assignment for each ion. The ions were separated by 44 m/z, which enabled their characterization as Surfynol® 4XX (S4XX, XX=40, 65, and 85), wherein increasing XX values indicate increasing amounts of ethoxylation on a backbone of 2,4,7,9-tetramethyl-5-decyne-4,7-diol (Surfynol® 104). Sodiated triethylene glycol monobutyl ether (TBG) of m/z 229 (C10H22O4Na) was also identified in the seized counterfeit banknotes via EASI(+) FT-ICR MS. Surfynol® and TBG are constituents of inks used for inkjet printing.

SELECTION OF CITATIONS
SEARCH DETAIL
...