Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 149(13): 134111, 2018 Oct 07.
Article in English | MEDLINE | ID: mdl-30292200

ABSTRACT

Exciton formation leads to J-bands in solid pentacene. Describing these exciton bands represents a challenge for both time-dependent (TD) density-functional theory (DFT) and for its semi-empirical analog, namely, for TD density-functional tight binding (DFTB) for three reasons: (i) solid pentacene and pentacene aggregates are bound only by van der Waals forces which are notoriously difficult to describe with DFT and DFTB, (ii) the proper description of the long-range coupling between molecules, needed to describe Davydov splitting, is not easy to include in TD-DFT with traditional functionals and in TD-DFTB, and (iii) mixing may occur between local and charge transfer excitons, which may, in turn, require special functionals. We assess how far TD-DFTB has progressed toward a correct description of this type of exciton by including both a dispersion correction for the ground state and a range-separated hybrid functional for the excited state and comparing the results against corresponding TD-CAM-B3LYP/CAM-B3LYP+D3 results. Analytic results for parallel-stacked ethylene are derived which go beyond Kasha's exciton model [M. Kasha, H. R. Rawls, and A. El-Bayoumi, Pure Appl. Chem. 11, 371 (1965)] in that we are able to make a clear distinction between charge transfer and energy transfer excitons. This is further confirmed when it is shown that range-separated hybrids have a markedly greater effect on charge-transfer excitons than on energy-transfer excitons in the case of parallel-stacked pentacenes. TD-DFT calculations with the CAM-B3LYP functional and TD-lc-DFT calculations lead to negligible excitonic corrections for the herringbone crystal structure, possibly because of an overcorrection of charge-transfer effects (CAM refers to Coulomb attenuated method). In this case, TD-DFT calculations with the B3LYP functional or TD-DFTB calculations parameterized to B3LYP give the best results for excitonic corrections for the herringbone crystal structure as judged from comparison with experimental spectra and with Bethe-Salpeter equation calculations from the literature.

2.
ACS Nano ; 12(10): 10463-10472, 2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30265515

ABSTRACT

Exfoliation of large-area monolayers is important for fundamental research and technological implementation of transition-metal dichalcogenides. Various techniques have been explored to increase the exfoliation yield, but little is known about the underlying mechanism at the atomic level. Here, we demonstrate gold-assisted mechanical exfoliation of monolayer molybdenum disulfide, up to a centimeter scale. Detailed spectroscopic, microscopic, and first-principles density functional theory analyses reveal that strong van der Waals (vdW) interaction between Au and the topmost MoS2 layer facilitates the exfoliation of monolayers. However, the large-area exfoliation promoted by such strong vdW interaction is only achievable on freshly prepared clean and smooth Au surfaces, while rough surfaces and surfaces exposed to air for more than 15 min result in negligible exfoliation yields. This technique is successfully extended to MoSe2, WS2, WSe2, MoTe2, WTe2, and GaSe. In addition, electrochemical characterization reveals intriguing interactions between monolayer MoS2 and Au. A subnanometer-thick MoS2 monolayer strongly passivates the chemical properties of the underlying Au, and the Au significantly modulates the electronic band structure of the MoS2, turning it from semiconducting to metallic. This could find applications in many areas, including electrochemistry, photovoltaics, and photocatalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...