Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Biosci ; 10: 1223863, 2023.
Article in English | MEDLINE | ID: mdl-37849822

ABSTRACT

In recent years, the popularity of fermented foods has strongly increased based on their proven health benefits and the adoption of new trends among consumers. One of these health-promoting products is water kefir, which is a fermented sugary beverage based on kefir grains (symbiotic colonies of yeast, lactic acid and acetic acid bacteria). According to previous knowledge and the uniqueness of each water kefir fermentation, the following project aimed to explore the microbial and chemical composition of a water kefir fermentation and its microbial consortium, through the integration of culture-dependent methods, compositional metagenomics, and untargeted metabolomics. These methods were applied in two types of samples: fermentation grains (inoculum) and fermentation samples collected at different time points. A strains culture collection of ∼90 strains was established by means of culture-dependent methods, mainly consisting of individuals of Pichia membranifaciens, Acetobacter orientalis, Lentilactobacillus hilgardii, Lacticaseibacillus paracasei, Acetobacter pomorum, Lentilactobacillus buchneri, Pichia kudriavzevii, Acetobacter pasteurianus, Schleiferilactobacillus harbinensis, and Kazachstania exigua, which can be further studied for their use in synthetic consortia formulation. In addition, metabarcoding of each fermentation time was done by 16S and ITS sequencing for bacteria and yeast, respectively. The results show strong population shifts of the microbial community during the fermentation time course, with an enrichment of microbial groups after 72 h of fermentation. Metataxonomics results revealed Lactobacillus and Acetobacter as the dominant genera for lactic acid and acetic acid bacteria, whereas, for yeast, P. membranifaciens was the dominant species. In addition, correlation and systematic analyses of microbial growth patterns and metabolite richness allowed the recognition of metabolic enrichment points between 72 and 96 h and correlation between microbial groups and metabolite abundance (e.g., Bile acid conjugates and Acetobacter tropicalis). Metabolomic analysis also evidenced the production of bioactive compounds in this fermented matrix, which have been associated with biological activities, including antimicrobial and antioxidant. Interestingly, the chemical family of Isoschaftosides (C-glycosyl flavonoids) was also found, representing an important finding since this compound, with hepatoprotective and anti-inflammatory activity, had not been previously reported in this matrix. We conclude that the integration of microbial biodiversity, cultured species, and chemical data enables the identification of relevant microbial population patterns and the detection of specific points of enrichment during the fermentation process of a food matrix, which enables the future design of synthetic microbial consortia, which can be used as targeted probiotics for digestive and metabolic health.

2.
Mitochondrial DNA B Resour ; 3(2): 1158-1160, 2018 Oct 27.
Article in English | MEDLINE | ID: mdl-33474450

ABSTRACT

The strain Purpureocillium sp. UdeA0106 is an antagonist of nematodes, fungi, and garden symphylans from crops with high economic importance in Colombia (Salazar 2013; Salazar et al. 2014; Cardona et al. 2014; Gallego et al. 2014) and is being studied to be proposed as new species. It was included on the 1000 fungal genomes project to elucidate its phylogenetic relationships with other fungi. Purpureocillium's mitogenome has 23,495 bp of circular size. It contains 15 protein-coding genes without duplications (PCGs), corresponding to the 60% of its total length, 23 transfer genes (7.6% tRNA), two of them duplicated (trnR and trnM), and two ribosomal genes (17.6% rRNA) and a GC content of 28.44%. A phylogenetic tree was proposed using their 14 PCGs mitochondrial genes and was compared with other fungi of the Subphylum Pezizomycotina. Phylogenetics relationships showed UdeA0106 to be close to P. chlamydosporia and M. anisopliae forming a cluster with other fungal biocontrol agents and separated the strain of plant pathogenic fungi.

3.
PLoS One ; 9(2): e90087, 2014.
Article in English | MEDLINE | ID: mdl-24587220

ABSTRACT

Current knowledge of the microbial diversity and metabolic pathways involved in hydrocarbon degradation in petroleum reservoirs is still limited, mostly due to the difficulty in recovering the complex community from such an extreme environment. Metagenomics is a valuable tool to investigate the genetic and functional diversity of previously uncultured microorganisms in natural environments. Using a function-driven metagenomic approach, we investigated the metabolic abilities of microbial communities in oil reservoirs. Here, we describe novel functional metabolic pathways involved in the biodegradation of aromatic compounds in a metagenomic library obtained from an oil reservoir. Although many of the deduced proteins shared homology with known enzymes of different well-described aerobic and anaerobic catabolic pathways, the metagenomic fragments did not contain the complete clusters known to be involved in hydrocarbon degradation. Instead, the metagenomic fragments comprised genes belonging to different pathways, showing novel gene arrangements. These results reinforce the potential of the metagenomic approach for the identification and elucidation of new genes and pathways in poorly studied environments and contribute to a broader perspective on the hydrocarbon degradation processes in petroleum reservoirs.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Hydrocarbons/metabolism , Metagenome/genetics , Petroleum/microbiology , Petroleum/supply & distribution , Aerobiosis , Bacteria/classification , Brazil , Phylogeny , Synteny
SELECTION OF CITATIONS
SEARCH DETAIL
...