Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Article in English | MEDLINE | ID: mdl-38012121

ABSTRACT

Naphthenic acids (NAs) are a complex mixture of organic compounds released during bitumen extraction from mined oil sands that are important contaminants of oil sands process-affected water (OSPW). NAs can be toxic to aquatic organisms and, therefore, are a main target compound for OSPW. The ability of microorganisms to degrade NAs can be exploited for bioremediation of OSPW using constructed wetland treatment systems (CWTS), which represent a possible low energy and low-cost option for scalable in situ NA removal. Recent advances in genomics and analytical chemistry have provided insights into a better understanding of the metabolic pathways and genes involved in NA degradation. Here, we discuss the ecology of microbial NA degradation with a focus on CWTS and summarize the current knowledge related to the metabolic pathways and genes used by microorganisms to degrade NAs. Evidence to date suggests that NAs are mostly degraded aerobically through ring cleavage via the beta-oxidation pathway, which can be combined with other steps such as aromatization, alpha-oxidation, omega-oxidation, or activation as coenzyme A (CoA) thioesters. Anaerobic NA degradation has also been reported via the production of benzoyl-CoA as an intermediate and/or through the involvement of methanogens or nitrate, sulfate, and iron reducers. Furthermore, we discuss how genomic, statistical, and modeling tools can assist in the development of improved bioremediation practices.


Subject(s)
Oil and Gas Fields , Water Pollutants, Chemical , Biodegradation, Environmental , Water/chemistry , Wetlands , Carboxylic Acids/chemistry , Carboxylic Acids/metabolism , Carboxylic Acids/toxicity , Genomics , Water Pollutants, Chemical/analysis
2.
PLoS One ; 18(10): e0292227, 2023.
Article in English | MEDLINE | ID: mdl-37878639

ABSTRACT

The aim of this study was to determine whether the soil faunal-microbial interaction complexity (SFMIC) is a significant factor influencing the soil microbial communities and the willow growth in the context of PAH contamination. The SFMIC treatment had eight levels: just the microbial community, or the microbial community with nematodes, springtails, earthworms and all the possible combinations. SFMIC affected the height and biomass of willows after eight weeks or growth. SFMIC affected the structure and the composition of the bacterial, archaeal and fungal communities, with significant effects of SFMIC on the relative abundance of fungal genera such as Sphaerosporella, a known willow symbiont during phytoremediation, and bacterial phyla such as Actinobacteriota, containing many polycyclic aromatic hydrocarbons (PAH) degraders. These SFMIC effects on microbial communities were not clearly reflected in the community structure and abundance of PAH degraders, even though some degraders related to Actinobacteriota and the diversity of Gram-negative degraders were affected by the SFMIC treatments. Over 95% of PAH was degraded in all pots at the end of the experiment. Overall, our results suggest that, under our experimental conditions, SFMIC changes willow phytoremediation outcomes.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Soil/chemistry , Soil Pollutants/analysis , Soil Microbiology , Polycyclic Aromatic Hydrocarbons/analysis , Bacteria , Biodegradation, Environmental , Microbial Interactions
3.
Trends Microbiol ; 31(5): 444-452, 2023 05.
Article in English | MEDLINE | ID: mdl-36549949

ABSTRACT

Microorganisms are informative biological integrators of past and present environmental abiotic and biotic conditions. At the same time, they are directly involved in ecosystem processes. Unfortunately, the complexity of microbial communities has so far resulted in most studies being descriptive. Here, we suggest that signals in the microbiome data can be used to forecast future ecosystem processes. The combination of omics with various statistical learning approaches, selected based on accuracy-interpretability and bias-variance trade-offs, will be key to attain this goal, as exemplified by recent studies. The time is ripe for microbial ecologists to fully exploit the forecasting power of microbiomes.


Subject(s)
Microbiota , Forecasting
4.
Appl Environ Microbiol ; 87(2)2021 01 04.
Article in English | MEDLINE | ID: mdl-33097512

ABSTRACT

Rhizodegradation is a promising cleanup technology where microorganisms degrade soil contaminants in the rhizosphere. A symbiotic relationship is expected to occur between plant roots and soil microorganisms in contaminated soils that enhances natural microbial degradation. However, little is known about how different initial microbiotas influence the rhizodegradation outcome. Recent studies have hinted that soil initial diversity has a determining effect on the outcome of contaminant degradation. To test this, we either planted (P) or not (NP) balsam poplars (Populus balsamifera) in two soils of contrasting diversity (agricultural and forest) that were contaminated or not with 50 mg kg-1 of phenanthrene (PHE). The DNA from the rhizosphere of the P and the bulk soil of the NP pots was extracted and the bacterial genes encoding the 16S rRNA, the PAH ring-hydroxylating dioxygenase alpha subunits (PAH-RHDα) of Gram-positive and Gram-negative bacteria, and the fungal ITS region were sequenced to characterize the microbial communities. The abundances of the PAH-RHDα genes were quantified by real-time quantitative PCR. Plant presence had a significant effect on PHE degradation only in the forest soil, whereas both NP and P agricultural soils degraded the same amount of PHE. Fungal communities were mainly affected by plant presence, whereas bacterial communities were principally affected by the soil type, and upon contamination the dominant PAH-degrading community was similarly constrained by soil type. Our results highlight the crucial importance of soil microbial and physicochemical characteristics in the outcome of rhizoremediation.IMPORTANCE Polycyclic aromatic hydrocarbons (PAH) are a group of organic contaminants that pose a risk to ecosystems' health. Phytoremediation is a promising biotechnology with the potential to restore PAH-contaminated soils. However, some limitations prevent it from becoming the remediation technology of reference, despite being environmentally friendlier than mainstream physicochemical alternatives. Recent reports suggest that the original soil microbial diversity is the key to harnessing the potential of phytoremediation. Therefore, this study focused on determining the effect of two different soil types in the fate of phenanthrene (a polycyclic aromatic hydrocarbon) under balsam poplar remediation. Poplar increased the degradation of phenanthrene in forest, but not in agricultural soil. The fungi were affected by poplars, whereas total bacteria and specific PAH-degrading bacteria were constrained by soil type, leading to different degradation patterns between soils. These results highlight the importance of performing preliminary microbiological studies of contaminated soils to determine whether plant presence could improve remediation rates or not.


Subject(s)
Phenanthrenes/metabolism , Populus , Rhizosphere , Soil Microbiology , Soil Pollutants/metabolism , Agriculture , Bacteria/genetics , Biodegradation, Environmental , Forests , Fungi/genetics , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Soil/chemistry
5.
FEMS Microbiol Ecol ; 96(10)2020 10 02.
Article in English | MEDLINE | ID: mdl-32821911

ABSTRACT

Spartina spp. are widely distributed salt marsh plants that have a recent history of hybridization and polyploidization. These events have resulted in a heightened tolerance to hydrocarbon contaminants, but the effects of this phenomenon on the rhizosphere microbial communities are unknown. Here, we grew two parental Spartina species, their hybrid and the resulting allopolyploid in salt marsh sediments that were contaminated or not with phenanthrene. The DNA from the rhizosphere soil was extracted and the bacterial 16S rRNA gene was amplified and sequenced, whereas the abundances of the genes encoding for the PAH (polycyclic aromatic hydrocarbon) ring-hydroxylating dioxygenase (RHD) of Gram-negative and Gram-positive bacteria were quantified by real-time PCR. Both the contamination and the plant genotype significantly affected the bacterial communities. In particular, the allopolyploid S. anglica harbored a more diverse bacterial community in its rhizosphere. The interspecific hybrid and the allopolyploid also harbored significantly more copies of the PAH-RHD gene of Gram-negative bacteria in their rhizosphere than the parental species, irrespective of the contamination treatments. Overall, our results are showing that the recent polyploidization events in the Spartina affected its rhizosphere bacterial communities, both under normal and contaminated conditions, possibly increasing its phytoremediation potential.


Subject(s)
Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Biodegradation, Environmental , Ploidies , RNA, Ribosomal, 16S/genetics , Rhizosphere , Soil Microbiology , Soil Pollutants/analysis
6.
Microb Biotechnol ; 11(5): 819-832, 2018 09.
Article in English | MEDLINE | ID: mdl-30066464

ABSTRACT

Phytoremediation is a green and sustainable alternative to physico-chemical methods for contaminated soil remediation. One of the flavours of phytoremediation is rhizoremediation, where plant roots stimulate soil microbes to degrade organic contaminants. This approach is particularly interesting as it takes advantage of naturally evolved interaction mechanisms between plant and microorganisms and often results in a complete mineralization of the contaminants (i.e. transformation to water and CO2 ). However, many biotic and abiotic factors influence the outcome of this interaction, resulting in variable efficiency of the remediation process. The difficulty to predict precisely the timeframe associated with rhizoremediation leads to low adoption rates of this green technology. Here, we review recent literature related to rhizoremediation, with a particular focus on soil organisms. We then expand on the potential of rhizoremediation to be a model plant-microbe interaction system for microbiome manipulation studies.


Subject(s)
Biodegradation, Environmental , Carbon Dioxide/metabolism , Hydrocarbons/metabolism , Microbiota , Plant Roots/microbiology , Soil Pollutants/metabolism , Water/metabolism , Biotransformation
SELECTION OF CITATIONS
SEARCH DETAIL
...