Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Biotechnol J ; 19(5): e2300664, 2024 May.
Article in English | MEDLINE | ID: mdl-38719620

ABSTRACT

CYP116B5 is a class VII P450 in which the heme domain is linked to a FMN and 2Fe2S-binding reductase. Our laboratory has proved that the CYP116B5 heme domain (CYP116B5-hd) is capable of catalyzing the oxidation of substrates using H2O2. Recently, the Molecular Lego approach was applied to join the heme domain of CYP116B5 to sarcosine oxidase (SOX), which provides H2O2 in-situ by the sarcosine oxidation. In this work, the chimeric self-sufficient fusion enzyme CYP116B5-SOX was heterologously expressed, purified, and characterized for its functionality by absorbance and fluorescence spectroscopy. Differential scanning calorimetry (DSC) experiments revealed a TM of 48.4 ± 0.04 and 58.3 ± 0.02°C and a enthalpy value of 175,500 ± 1850 and 120,500 ± 1350 cal mol-1 for the CYP116B5 and SOX domains respectively. The fusion enzyme showed an outstanding chemical stability in presence of up to 200 mM sarcosine or 5 mM H2O2 (4.4 ± 0.8 and 11.0 ± 2.6% heme leakage respectively). Thanks to the in-situ H2O2 generation, an improved kcat/KM for the p-nitrophenol conversion was observed (kcat of 20.1 ± 0.6 min-1 and KM of 0.23 ± 0.03 mM), corresponding to 4 times the kcat/KM of the CYP116B5-hd. The aim of this work is the development of an engineered biocatalyst to be exploited in bioremediation. In order to tackle this challenge, an E. coli strain expressing CYP116B5-SOX was employed to exploit this biocatalyst for the oxidation of the wastewater contaminating-drug tamoxifen. Data show a 12-fold increase in tamoxifen N-oxide production-herein detected for the first time as CYP116B5 metabolite-compared to the direct H2O2 supply, equal to the 25% of the total drug conversion.


Subject(s)
Biodegradation, Environmental , Cytochrome P-450 Enzyme System , Escherichia coli , Hydrogen Peroxide , Sarcosine Oxidase , Hydrogen Peroxide/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Sarcosine Oxidase/metabolism , Sarcosine Oxidase/genetics , Sarcosine Oxidase/chemistry , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/chemistry , Oxidation-Reduction , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/chemistry , Sarcosine/metabolism , Sarcosine/analogs & derivatives
2.
Molecules ; 29(2)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38276601

ABSTRACT

The cytochrome P450 family consists of ubiquitous monooxygenases with the potential to perform a wide variety of catalytic applications. Among the members of this family, CYP116B5hd shows a very prominent resistance to peracid damage, a property that makes it a promising tool for fine chemical synthesis using the peroxide shunt. In this meticulous study, we use hyperfine spectroscopy with a multifrequency approach (X- and Q-band) to characterize in detail the electronic structure of the heme iron of CYP116B5hd in the resting state, which provides structural details about its active site. The hyperfine dipole-dipole interaction between the electron and proton nuclear spins allows for the locating of two different protons from the coordinated water and a beta proton from the cysteine axial ligand of heme iron with respect to the magnetic axes centered on the iron. Additionally, since new anti-cancer therapies target the inhibition of P450s, here we use the CYP116B5hd system-imidazole as a model for studying cytochrome P450 inhibition by an azo compound. The effects of the inhibition of protein by imidazole in the active-site geometry and electron spin distribution are presented. The binding of imidazole to CYP116B5hd results in an imidazole-nitrogen axial coordination and a low-spin heme FeIII. HYSCORE experiments were used to detect the hyperfine interactions. The combined interpretation of the gyromagnetic tensor and the hyperfine and quadrupole tensors of magnetic nuclei coupled to the iron electron spin allowed us to obtain a precise picture of the active-site geometry, including the orientation of the semi-occupied orbitals and magnetic axes, which coincide with the porphyrin N-Fe-N axes. The electronic structure of the iron does not seem to be affected by imidazole binding. Two different possible coordination geometries of the axial imidazole were observed. The angles between gx (coinciding with one of the N-Fe-N axes) and the projection of the imidazole plane on the heme were determined to be -60° and -25° for each of the two possibilities via measurement of the hyperfine structure of the axially coordinated 14N.


Subject(s)
Ferric Compounds , Heme , Heme/chemistry , Electron Spin Resonance Spectroscopy/methods , Ferric Compounds/chemistry , Protons , Iron/chemistry , Imidazoles/chemistry , Cytochrome P-450 Enzyme System
3.
Biotechnol J ; 18(5): e2200622, 2023 May.
Article in English | MEDLINE | ID: mdl-36866427

ABSTRACT

Self-sufficient cytochromes P450 of the sub-family CYP116B have gained great attention in biotechnology due to their ability to catalyze challenging reactions toward a wide range of organic compounds. However, these P450s are often unstable in solution and their activity is limited to a short reaction time. Previously it has been shown that the isolated heme domain of CYP116B5 can work as a peroxygenase with H2 O2 without the addition of NAD(P)H. In this work, protein engineering was used to generate a chimeric enzyme (CYP116B5-SOX), in which the native reductase domain is replaced by a monomeric sarcosine oxidase (MSOX) capable of producing H2 O2 . The full-length enzyme (CYP116B5-fl) is characterized for the first time, allowing a detailed comparison to the heme domain (CYP116B5-hd) and CYP116B5-SOX. The catalytic activity of the three forms of the enzyme was studied using p-nitrophenol as substrate, and adding NADPH (CYP116B5-fl), H2 O2 (CYP116B5-hd), and sarcosine (CYP116B5-SOX) as source of electrons. CYP116B5-SOX performs better than CYP116B5-fl and CYP116B5-hd showing 10- and 3-folds higher activity, in terms of p-nitrocatechol produced per mg of enzyme per minute. CYP116B5-SOX represents an optimal model to exploit CYP116B5 and the same protein engineering approach could be used for P450s of the same class.


Subject(s)
Cytochrome P-450 Enzyme System , Protein Engineering , Cytochrome P-450 Enzyme System/metabolism , Catalysis , Heme/chemistry , Heme/metabolism
4.
RSC Adv ; 12(52): 33964-33969, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36505709

ABSTRACT

Terpenes are natural molecules of valuable interest for different industrial applications. Cytochromes P450 enzymes can functionalize terpenoids to form high value oxidized derivatives in a green and sustainable manner, representing a valid alternative to chemical catalysis. In this work, an enhanced and specific epoxidation activity of cytochrome P450 BM3 mutants was found for the terpenes geraniol and linalool. This is the first report showing the epoxidation of linalool by P450 BM3 and its mutant A2 (Asp251Gly/Gln307His) with the formation of valuable oxide derivatives, highlighting the relevance of this enzymes for industrial applications.

5.
Protein Sci ; 31(12): e4501, 2022 12.
Article in English | MEDLINE | ID: mdl-36334042

ABSTRACT

Sphingomonas paucimobilis' P450SPα (CYP152B1) is a good candidate as industrial biocatalyst. This enzyme is able to use hydrogen peroxide as unique cofactor to catalyze the fatty acids conversion to α-hydroxy fatty acids, thus avoiding the use of expensive electron-donor(s) and redox partner(s). Nevertheless, the toxicity of exogenous H2 O2 toward proteins and cells often results in the failure of the reaction scale-up when it is directly added as co-substrate. In order to bypass this problem, we designed a H2 O2 self-producing enzyme by fusing the P450SPα to the monomeric sarcosine oxidase (MSOX), as H2 O2 donor system, in a unique polypeptide chain, obtaining the P450SPα -polyG-MSOX fusion protein. The purified P450SPα -polyG-MSOX protein displayed high purity (A417 /A280  = 0.6) and H2 O2 -tolerance (kdecay  = 0.0021 ± 0.000055 min-1 ; ΔA417  = 0.018 ± 0.001) as well as good thermal stability (Tm : 59.3 ± 0.3°C and 63.2 ± 0.02°C for P450SPα and MSOX domains, respectively). The data show how the catalytic interplay between the two domains can be finely regulated by using 500 mM sarcosine as sacrificial substrate to generate H2 O2 . Indeed, the fusion protein resulted in a high conversion yield toward fat waste biomass-representative fatty acids, that is, lauric acid (TON = 6,800 compared to the isolated P450SPα TON = 2,307); myristic acid (TON = 6,750); and palmitic acid (TON = 1,962).


Subject(s)
Fatty Acids , Mixed Function Oxygenases , Mixed Function Oxygenases/metabolism , Sarcosine Oxidase/chemistry , Sarcosine Oxidase/metabolism , Oxidation-Reduction , Hydrogen Peroxide
6.
Data Brief ; 42: 108195, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35572793

ABSTRACT

This paper documents the dataset obtained from the Electron Paramagnetic Resonance (EPR) study of the electronic properties of a self-sufficient cytochrome P450, CYP116B5hd, which possesses an interesting catalytic activity for synthetic purposes. In fact, when isolated, its heme domain can act as a peroxygenase on different substrates of biotechnological interest. Raw data shown in Famulari et al. (2022) and supplementary data in raw and processed forms (figures) are documented and available in this paper. Additionally, simulations of the experimental data together with simulation scripts based for EasySpin, a widespread MATLAB toolbox for EPR spectral simulations, are provided. The procedure for g-value analysis based on a crystal-field theory is also detailed here, offering an interesting tool for comparison of FeIII-heme P450 systems. Due to the catalytic interest of the protein, which has been recently discovered, and the correlation that has been reported between g-values and peroxidase function, both, CW-EPR and HYSCORE spectra and data set of the model CYPBM3hd are also provided. Finally, the materials and methods for enzyme production and purification, sample preparation and experimental and spectroscopic procedures a together with instrumental details are described in detail. The data files and simulation scripts can be found in: https://doi.org/10.5281/zenodo.6418626.

7.
J Inorg Biochem ; 231: 111785, 2022 06.
Article in English | MEDLINE | ID: mdl-35313131

ABSTRACT

CYP116B5 is a self-sufficient cytochrome P450 (CYP450) with interesting catalytic properties for synthetic purposes. When isolated, its heme domain can act as a peroxygenase on different substrates of biotechnological interest. Here, by means of continuous wave and advanced EPR techniques, the coordination environment of iron in the isolated CYP116B5 heme domain (CYP116b5hd) is characterized. The ligand-free protein shows the characteristic EPR spectrum of a low-spin (S = 1/2) FeIII-heme with [gz = 2.440 ± 0.005, gy = 2.25 ± 0.01, gx = 1.92 ± 0.01]. These g-values reflect an electronic ground state very similar to classical P450 monooxygenases rather than P450 peroxygenases. Binding of imidazole results in g-values very close to the ones reported for CYP152 peroxygenases. The detection of hyperfine interactions through HYperfine Sub-level CORrElation (HYSCORE) Spectroscopy experiments, shows that this is due to a nitrogen-mediated axial coordination. This work adds a piece of experimental evidence to the research, aimed at elucidating the features that distinguish the classical P450 enzymes from peroxygenases. It shows that the electronic environment of heme iron of CYP116B5 in the resting state is similar to the classical P450 monooxygenases. Therefore, it is not the critical factor that confers to CYP116B5hd its peroxygenase-like activity, suggesting a crucial role of the protein matrix.


Subject(s)
Ferric Compounds , Heme , Cytochrome P-450 Enzyme System/metabolism , Electron Spin Resonance Spectroscopy/methods , Ferric Compounds/chemistry , Heme/chemistry , Iron/chemistry
8.
Trends Biotechnol ; 39(11): 1184-1207, 2021 11.
Article in English | MEDLINE | ID: mdl-33610332

ABSTRACT

Members of class VII cytochromes P450 are catalytically self-sufficient enzymes containing a phthalate dioxygenase reductase-like domain fused to the P450 catalytic domain. Among these, CYP116B46 is the first enzyme for which the 3D structure of the whole polypeptide chain has been solved, shedding light on the interaction between its domains, which is crucial for catalysis. Most of these enzymes have been isolated from extremophiles or detoxifying bacteria that can carry out regio- and enantioselective oxidation of compounds of biotechnological interest. Protein engineering has generated mutants that can perform challenging organic reactions such as the anti-Markovnikov alkene oxidation. This potential, combined with the detailed 3D structure, forms the basis for further directed evolution studies aimed at widening their biotechnological exploitation.


Subject(s)
Cytochrome P-450 Enzyme System , Synthetic Biology , Bacteria/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Oxidation-Reduction , Protein Engineering
9.
Chem Commun (Camb) ; 56(57): 7857-7860, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32583822

ABSTRACT

An investigation using recombinant ribosomal proteins and synthetic peptide models was conducted to uncover the effect of the introduction of a negative charge at the C-terminal tail of ribosomal protein S15. Our results help provide a chemical rationale towards understanding how G2019S LRRK2, a common clinical mutation, causes Parkinson's disease.


Subject(s)
Mutation , Ribosomal Proteins/chemistry , Ribosomal Proteins/metabolism , Cryoelectron Microscopy , Humans , Parkinson Disease/metabolism , Peptides/chemistry , Peptides/metabolism , Phosphorylation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Ribosomal Proteins/genetics
10.
IUBMB Life ; 72(2): 266-274, 2020 02.
Article in English | MEDLINE | ID: mdl-31509345

ABSTRACT

In Escherichia coli, the expression of heterologous genes for the production of recombinant proteins can be challenging due to the codon bias of different organisms. The rare codons AGG and AGA are among the rarest in E. coli. In this work, by using the human gene RioK2 as case study, we found that the presence of consecutive AGG-AGA led to a premature stop, which may be caused by an event of -1 frameshift. We found that translational problems caused by consecutive AGG-AGA are sequence dependent, in particular, in sequences that contain multiple rare AGG or AGA codons elsewhere. Translational problems can be alleviated by different strategies, including codon harmonization, codon optimization, or by substituting the consecutive AGG-AGA codons by more frequent arginine codons. Overall, our results furthered our understanding about the relationship between consecutive rare codons and translational problems. Such information will aid the design of DNA sequence for the production of recombinant proteins.


Subject(s)
Codon , Escherichia coli/metabolism , Protein Biosynthesis , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger/metabolism , RNA, Transfer, Arg/genetics , Recombinant Proteins/metabolism , Escherichia coli/genetics , Humans , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/genetics , Recombinant Proteins/genetics , Ribosomes/metabolism
11.
Sci Rep ; 9(1): 8884, 2019 06 20.
Article in English | MEDLINE | ID: mdl-31222068

ABSTRACT

Human ribosomal proteins play important structural and functional roles in the ribosome and in protein synthesis. An efficient method to recombinantly produce and purify these proteins would enable their full characterisation. However, the production of human ribosomal proteins can be challenging. The only published method about the recombinant production of human ribosomal proteins involved the recovery of proteins from inclusion bodies, a process that is tedious and may lead to significant loss of yield. Herein, we explored the use of different Escherichia coli competent cells and fusion protein tags for the recombinant production of human ribosomal proteins. We found that, by using thioredoxin as a fusion protein, soluble ribosomal protein could be obtained directly from cell lysates, thus leading to an improved method to recombinantly produce these proteins.


Subject(s)
Escherichia coli/genetics , Ribosomal Proteins/biosynthesis , Humans , Recombinant Proteins/metabolism , Ribosomal Proteins/metabolism
12.
Drug Discov Today ; 24(6): 1295-1303, 2019 06.
Article in English | MEDLINE | ID: mdl-30974176

ABSTRACT

Parkinson's disease (PD) is one of the most common neurodegenerative disorders. The exact cause(s) of PD is not well understood, although genetic mutations are associated with some forms of the disease. Many of these mutations, in particular those that are found in LRRK2, DJ-1, PINK1, and Parkin, are linked to the deregulation of mRNA translation, suggesting that this process is important for the onset of PD. Herein, we highlight recent studies that provide insights into the molecular mechanisms that relate mRNA translation to PD. These studies confirm the central role of translation in PD, emphasising the potential of restoring mRNA translation functionality as a new therapeutic treatment against PD, and providing novel targets for developing new chemical agents to target this disease.


Subject(s)
Parkinson Disease/drug therapy , Parkinson Disease/genetics , Protein Biosynthesis/drug effects , Protein Biosynthesis/genetics , RNA, Messenger/genetics , Animals , Humans , Mutation/drug effects , Mutation/genetics , Pharmaceutical Preparations/administration & dosage
13.
Org Biomol Chem ; 15(5): 1100-1105, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28091667

ABSTRACT

Chemical tools that recognise post-translational modifications have promising applications in biochemistry and in therapy. We report a simple carboxycalixarene that selectively binds molecules containing di/trimethylammonium moieties in isolation, in cell lysates and when incorporated in histone peptides. Our findings reveal the potential of using carboxycalixarene-based receptors to study epigenetic regulation.

14.
Appl Environ Microbiol ; 82(4): 1295-1304, 2016 02 15.
Article in English | MEDLINE | ID: mdl-26682849

ABSTRACT

Both enantiomers of lactic acid, l-lactic acid and d-lactic acid, can be produced in a sustainable way by a photosynthetic microbial cell factory and thus from CO2, sunlight, and water. Several properties of polylactic acid (a polyester of polymerized lactic acid) depend on the controlled blend of these two enantiomers. Recently, cyanobacterium Synechocystis sp. strain PCC6803 was genetically modified to allow formation of either of these two enantiomers. This report elaborates on the d-lactic acid production achieved by the introduction of a d-specific lactate dehydrogenase from the lactic acid bacterium Leuconostoc mesenteroides into Synechocystis. A typical batch culture of this recombinant strain initially shows lactic acid production, followed by a phase of lactic acid consumption, until production "outcompetes" consumption at later growth stages. We show that Synechocystis is able to use d-lactic acid, but not l-lactic acid, as a carbon source for growth. Deletion of the organism's putative d-lactate dehydrogenase (encoded by slr1556), however, does not eliminate this ability with respect to d-lactic acid consumption. In contrast, d-lactic acid consumption does depend on the presence of glycolate dehydrogenase GlcD1 (encoded by sll0404). Accordingly, this report highlights the need to match a product of interest of a cyanobacterial cell factory with the metabolic network present in the host used for its synthesis and emphasizes the need to understand the physiology of the production host in detail.


Subject(s)
Lactic Acid/metabolism , Metabolic Engineering , Synechocystis/metabolism , Alcohol Oxidoreductases/metabolism , Carbon/metabolism , L-Lactate Dehydrogenase/genetics , L-Lactate Dehydrogenase/metabolism , Leuconostoc/enzymology , Leuconostoc/genetics , Metabolic Networks and Pathways/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Synechocystis/enzymology , Synechocystis/genetics , Synechocystis/growth & development
15.
Biotechnol Biofuels ; 7: 99, 2014.
Article in English | MEDLINE | ID: mdl-24991233

ABSTRACT

BACKGROUND: Molecular engineering of the intermediary physiology of cyanobacteria has become important for the sustainable production of biofuels and commodity compounds from CO2 and sunlight by "designer microbes." The chemical commodity product L-lactic acid can be synthesized in one step from a key intermediary metabolite of these organisms, pyruvate, catalyzed by a lactate dehydrogenase. Synthetic biology engineering to make "designer microbes" includes the introduction and overexpression of the product-forming biochemical pathway. For further optimization of product formation, modifications in the surrounding biochemical network of intermediary metabolism have to be made. RESULTS: To improve light-driven L-lactic acid production from CO2, we explored several metabolic engineering design principles, using a previously engineered L-lactic acid producing mutant strain of Synechocystis sp. PCC6803 as the benchmark. These strategies included: (i) increasing the expression level of the relevant product-forming enzyme, lactate dehydrogenase (LDH), for example, via expression from a replicative plasmid; (ii) co-expression of a heterologous pyruvate kinase to increase the flux towards pyruvate; and (iii) knockdown of phosphoenolpyruvate carboxylase to decrease the flux through a competing pathway (from phosphoenolpyruvate to oxaloacetate). In addition, we tested selected lactate dehydrogenases, some of which were further optimized through site-directed mutagenesis to improve the enzyme's affinity for the co-factor nicotinamide adenine dinucleotide phosphate (NADPH). The carbon partitioning between biomass and lactic acid was increased from about 5% to over 50% by strain optimization. CONCLUSION: An efficient photosynthetic microbial cell factory will display a high rate and extent of conversion of substrate (CO2) into product (here: L-lactic acid). In the existing CO2-based cyanobacterial cell factories that have been described in the literature, by far most of the control over product formation resides in the genetically introduced fermentative pathway. Here we show that a strong promoter, in combination with increased gene expression, can take away a significant part of the control of this step in lactic acid production from CO2. Under these premises, modulation of the intracellular precursor, pyruvate, can significantly increase productivity. Additionally, production enhancement is achieved by protein engineering to increase co-factor specificity of the heterologously expressed LDH.

16.
PLoS One ; 7(11): e50470, 2012.
Article in English | MEDLINE | ID: mdl-23185630

ABSTRACT

The ethylene-forming enzyme (EFE) from Pseudomonas syringae catalyzes the synthesis of ethylene which can be easily detected in the headspace of closed cultures. A synthetic codon-optimized gene encoding N-terminal His-tagged EFE (EFEh) was expressed in Synechocystis sp. PCC 6803 (Synechocystis) and Escherichia coli (E. coli) under the control of diverse promoters in a self-replicating broad host-range plasmid. Ethylene synthesis was stably maintained in both organisms in contrast to earlier work in Synechococcus elongatus PCC 7942. The rate of ethylene accumulation was used as a reporter for protein expression in order to assess promoter strength and inducibility with the different expression systems. Several metal-inducible cyanobacterial promoters did not function in E. coli but were well-regulated in cyanobacteria, albeit at a low level of expression. The E. coli promoter P(trc) resulted in constitutive expression in cyanobacteria regardless of whether IPTG was added or not. In contrast, a Lac promoter variant, P(A1lacO-1), induced EFE-expression in Synechocystis at a level of expression as high as the Trc promoter and allowed a fine level of IPTG-dependent regulation of protein-expression. The regulation was tight at low cell density and became more relaxed in more dense cultures. A synthetic quorum-sensing promoter system was also constructed and shown to function well in E. coli, however, only a very low level of EFE-activity was observed in Synechocystis, independent of cell density.


Subject(s)
Bacterial Proteins/genetics , Escherichia coli/genetics , Ethylenes/biosynthesis , Gene Expression Regulation, Bacterial , Lyases/genetics , Pseudomonas syringae/chemistry , Synechocystis/genetics , Bacterial Proteins/metabolism , Base Sequence , Codon , Escherichia coli/enzymology , Lyases/metabolism , Molecular Sequence Data , Plasmids , Promoter Regions, Genetic , Pseudomonas syringae/enzymology , Quorum Sensing , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Synechocystis/enzymology , Transformation, Bacterial
SELECTION OF CITATIONS
SEARCH DETAIL
...