Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38668170

ABSTRACT

Scleroglucan (SG) is resistant to harsh reservoir conditions such as high temperature, high shear stresses, and the presence of chemical substances. However, it is susceptible to biological degradation because bacteria use SG as a source of energy and carbon. All degradation effects lead to viscosity loss of the SG solutions, affecting their performance as an enhanced oil recovery (EOR) polymer. Recent studies have shown that nanoparticles (NPs) can mitigate these degradative effects. For this reason, the EOR performance of two new nanohybrids (NH-A and NH-B) based on carboxymethyl-scleroglucan and amino-functionalized silica nanoparticles was studied. The susceptibility of these products to chemical, mechanical, and thermal degradation was evaluated following standard procedures (API RP 63), and the microbial degradation was assessed under reservoir-relevant conditions (1311 ppm and 100 °C) using a bottle test system. The results showed that the chemical reactions for the nanohybrids obtained modified the SG triple helix configuration, impacting its viscosifying power. However, the nanohybrid solutions retained their viscosity during thermal, mechanical, and chemical degradation experiments due to the formation of a tridimensional network between the nanoparticles (NPs) and the SG. Also, NH-A and NH-B solutions exhibited bacterial control because of steric hindrances caused by nanoparticle modifications to SG. This prevents extracellular glucanases from recognizing the site of catalysis, limiting free glucose availability and generating cell death due to substrate depletion. This study provides insights into the performance of these nanohybrids and promotes their application in reservoirs with harsh conditions.

2.
Nanomaterials (Basel) ; 14(6)2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38535647

ABSTRACT

In this study, two new nanohybrids (NH-A and NH-B) were synthesized through carbodiimide-assisted coupling. The reaction was performed between carboxymethyl-scleroglucans (CMS-A and CMS-B) with different degrees of substitution and commercial amino-functionalized silica nanoparticles using 4-(dimethylamino)-pyridine (DMAP) and N,N'-dicyclohexylcarbodiimide (DCC) as catalysts. The morphology and properties of the nanohybrids were investigated by using transmission (TEM) and scanning electron microscopy (SEM), electron-dispersive scanning (EDS), attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FT-IR), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP-OES), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic light scattering (DLS). The nanohybrids exhibited differences in structure due to the incorporation of polyhedral oligomeric silsesquioxane (POSS) materials. The results reveal that hybrid nanomaterials exhibit similar thermal properties but differ in morphology, chemical structure, and crystallinity properties. Finally, a viscosity study was performed on the newly obtained nanohybrid materials; viscosities of nanohybrids increased significantly in comparison to the carboxymethyl-scleroglucans, with a viscosity difference of 7.2% for NH-A and up to 32.6% for NH-B.

3.
ACS Omega ; 9(7): 7923-7936, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38405542

ABSTRACT

Nanoparticles (NPs) have been proposed as additives to improve the rheological properties of polymer solutions and reduce mechanical degradation. This study presents the results of the retention experiment and the numerical simulation of the displacement efficiency of a SiO2/hydrolyzed polyacrylamide (HPAM) nanohybrid (CSNH-AC). The CSNH-AC was obtained from SiO2 NPs (synthesized by the Stöber method) chemically modified with HPAM chains. Attenuated total reflection-Fourier transform infrared spectroscopy, field emission gun-scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis were used to characterize the nanohybrid. The injectivity and dynamic retention tests were performed at 56 °C in a sandstone core with a porosity of ∼26% and a permeability of 117 and 287 mD. A history matching of the dynamic retention test was performed to determine the maximum and residual adsorption, IPV, and residual resistance factor (RRF). A laboratory-scale model was used to evaluate the displacement efficiency of CSNH-AC and HPAM through numerical simulation. According to the results, the nanohybrid exhibits better rheological behavior than the HPAM solution at a lower concentration. The nanopolymer sol adsorption and IPV (29,7 µg/grock, 14,5) are greater than those of the HPAM solution (9,2 µg/grock, 10), which was attributed to the difference between the rock permeabilities used in the laboratory tests (HPAM: 287 mD and CSNH-AC: 117 mD). The RF of both samples gradually increases with the increase in shear rate, while the RRF slightly decreases and tends to balance. However, the nanopolymer sol exhibits greater RF and RRF values than that of the polymer solution due to the strong flow resistance of the nanohybrid (higher retention in the porous media). According to the field-scale simulation, the incremental oil production could be 295,505 and 174,465 barrels for the nanopolymer sol and the HPAM solution, respectively (compared to waterflooding). This will represent an incremental recovery factor of 11.3% for the nanopolymer sol and 6.7% for the HPAM solution.

4.
Nanomaterials (Basel) ; 14(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38251121

ABSTRACT

Biopolymers emerge as promising candidates for enhanced oil recovery (EOR) applications due to their molecular structures, which exhibit better stability than polyacrylamides under harsh conditions. Nonetheless, biopolymers are susceptible to oxidation and biological degradation. Biopolymers reinforced with nanoparticles could be a potential solution to the issue. The nanofluids' stability and performance depend on the nanoparticles' properties and the preparation method. The primary objective of this study was to evaluate the effect of the preparation method and the nanoparticle type (SiO2, Al2O3, and TiO2) on the viscosity and stability of the scleroglucan (SG). The thickening effect of the SG solution was improved by adding all NPs due to the formation of three-dimensional structures between the NPs and the SG chains. The stability test showed that the SG + Al2O3 and SG + TiO2 nanofluids are highly unstable, but the SG + SiO2 nanofluids are highly stable (regardless of the preparation method). According to the ANOVA results, the preparation method and standing time influence the nanofluid viscosity with a statistical significance of 95%. On the contrary, the heating temperature and NP type are insignificant. Finally, the nanofluid with the best performance was 1000 ppm of SG + 100 ppm of SiO2_120 NPs prepared by method II.

5.
Polymers (Basel) ; 16(2)2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38257006

ABSTRACT

This paper presents the methodology for synthesizing and characterizing two carboxymethyl EOR-grade Scleroglucans (CMS-A and CMS-B). An O-Alkylation reaction was used to insert a hydrophilic group (monochloroacetic acid-MCAA) into the biopolymer's anhydroglucose subunits (AGUs). The effect of the degree of the carboxymethyl substitution on the rheology and thermal stability of the Scleroglucan (SG) was also evaluated. Simultaneous thermal analysis (STA/TGA-DSC), differential scanning calorimetry (DSC), X-ray Diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Scanning Electron Microscopy, and Energy Dispersive Spectroscopy (SEM/EDS) were employed to characterize both CMS products. FTIR analysis revealed characteristic peaks corresponding to the carboxymethyl functional groups, confirming the modification. Also, SEM analysis provided insights into the structural changes in the polysaccharide after the O-Alkylation reaction. TGA results showed that the carboxymethylation of SG lowered its dehydroxylation temperature but increased its thermal stability above 300 °C. The CMS products and SG exhibited a pseudoplastic behavior; however, lower shear viscosities and relaxation times were observed for the CMS products due to the breakage of the SG triple helix for the chemical modification. Despite the viscosity results, the modified Scleroglucans are promising candidates for developing new engineering materials for EOR processes.

6.
Molecules ; 25(12)2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32580500

ABSTRACT

In industry, silica nanoparticles (NPs) are obtained by the fuming and the precipitation method. Fumed silica NPs are commonly used in the preparation of nanocomposites because they have an extremely low bulk density (160-190 kg/m3), large surface area (50-600 m2/g), and nonporous surface, which promotes strong physical contact between the NPs and the organic phase. Fumed silica has fewer silanol groups (Si-OH) on its surface than the silica prepared by the Stöber method. However, the number of -OH groups on the fumed silica surface can be increased by pretreating them with sodium hydroxide (NaOH) before further surface modification. In this study, the effectiveness of the NaOH pretreatment was evaluated on commercial fumed silica NPs with a surface area of 200 m2/g. The number of surface -OH groups was estimated by potentiometric titration. The pretreated fumed NPs, and the precipitated NPs (prepared by the Stöber method) were modified with 3-aminopropyltriethoxysilane (APTES) to obtain A200S and nSiO2-APTES, respectively. The NPs were characterized using electron dispersive scanning (EDS), scanning electron microscopy (SEM), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), BET (Brunauer-Emmett-Teller) analysis, and ζ-potential. XRD confirmed the presence of the organo-functional group on the surface of both NPs. After the amino-functionalization, the ζ-potential values of the nSiO2 and A200 changed from -35.5 mV and -14.4 mV to +26.2 mV and +11.76 mV, respectively. Consequently, we have successfully synthesized functionalized NPs with interesting, specific surface area and porosity (pore volume and size), which can be attractive materials for chemical and energy industries.


Subject(s)
Amines/chemistry , Nanoparticles/chemistry , Nanostructures/chemistry , Silicon Dioxide/chemistry , Dynamic Light Scattering , Nanoparticles/ultrastructure , Nanostructures/ultrastructure , Particle Size , Propylamines/chemistry , Silanes/chemistry , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
7.
Polymers (Basel) ; 12(5)2020 May 18.
Article in English | MEDLINE | ID: mdl-32443578

ABSTRACT

In this study, a set of advanced characterization techniques were used to evaluate the morphological, structural, and thermal properties of a novel molecular hybrid based on silica nanoparticles/hydrolyzed polyacrylamide (CSNH-PC1), which was efficiently obtained using a two-step synthetic pathway. The morphology of the nanohybrid CSNH-PC1 was determined using scanning electron microscopy (SEM), dynamic light scattering (DLS), and nanotracking analysis (NTA) techniques. The presence of C, N, O, and Si atoms in the nanohybrid structure was verified using electron dispersive scanning (EDS). Moreover, the corresponding structural analysis was complemented using powder X-ray diffraction (XRD) and attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FT-IR). The covalent bond between APTES-functionalized SiO2 nanoparticles (nSiO2-APTES), and the hydrolyzed polyacrylamide (HPAM) chain (MW ≈ 20.106 Da) was confirmed with high-resolution X-ray spectroscopy (XPS). Finally, the thermal properties of the nanohybrid were evaluated by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results showed that the CSNH-PC1 has a spherical morphology, with sizes between 420-480 nm and higher thermal resistance compared to HPAM polymers without modification, with a glass transition temperature of 360 °C. The integration of these advanced characterization techniques implemented here shows promising results for the study and evaluation of new nanomaterials with multiple applications.

8.
Adv Colloid Interface Sci ; 272: 102018, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31450155

ABSTRACT

As oil fields go into their final stage of production, new technologies are necessary to sustain production and increase the recovery of the hydrocarbon. Chemical injection is an enhanced recovery technique, which focuses on increasing the effectiveness of waterfloods. However, the use of chemical flooding has been hampered by its relatively high cost and the adsorption of the injected chemicals onto the reservoir rocks. In recent years, nanofluids have been launched as an overall less expensive and more efficient alternative to other chemical agents. Nanoparticle inclusion is also proposed to mitigate polymer flooding performance limitations under harsh reservoir conditions. This review presents a comprehensive discussion of the most recent developments of polymer nanohybrids for oil recovery. First, the preparation methods of polymer nanohybrids are summarized and explained. Then, an explanation of the different mechanisms leading to improved oil recovery are highlighted. Finally, the current challenges and opportunities for future development and application of polymer nanohybrids for chemical flooding are identified.

9.
Nanomaterials (Basel) ; 9(1)2019 Jan 12.
Article in English | MEDLINE | ID: mdl-30642044

ABSTRACT

Recent studies revealed higher polymer flooding performance upon adding metal oxide nanoparticles (NPs) to acrylamide-based polymers during heavy oil recovery. The current study considers the effect of TiO2, Al2O3, in-situ prepared Fe(OH)3 and surface-modified SiO2 NPs on the performance of xanthan gum (XG) solutions to enhance heavy oil recovery. Surface modification of the SiO2 NPs was achieved by chemical grafting with 3-(methacryloyloxy)propyl]trimethoxysilane (MPS) and octyltriethoxysilane (OTES). The nanopolymer sols were characterized by their rheological properties and ζ-potential measurements. The efficiency of the nanopolymer sols in displacing oil was assessed using a linear sand-pack at 25 °C and two salinities (0.3 wt % and 1.0 wt % NaCl). The ζ-potential measurements showed that the NP dispersions in deionized (DI) water are unstable, but their colloidal stability improved in presence of XG. The addition of unmodified and modified SiO2 NPs increased the viscosity of the XG solution at all salinities. However, the high XG adsorption onto the surface of Fe(OH)3, Al2O3, and TiO2 NPs reduced the viscosity of the XG solution. Also, the NPs increased the cumulative oil recovery between 3% and 9%, and between 1% and 5% at 0 wt % and 0.3 wt % NaCl, respectively. At 1.0 wt % NaCl, the NPs reduced oil recovery by XG solution between 5% and 12%, except for Fe(OH)3 and TiO2 NPs. These NPs increased the oil recovery between 2% and 3% by virtue of reduced polymer adsorption caused by the alkalinity of the Fe(OH)3 and TiO2 nanopolymer sols.

SELECTION OF CITATIONS
SEARCH DETAIL
...