Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
1.
Materials (Basel) ; 17(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673082

ABSTRACT

Bridge cable wires suffer from alternating stress and environmental erosion, leading to premature failure prior to its design life. This paper investigates the fatigue and mechanical behaviors of corroded bridge cable wires with a zinc-aluminum (Zn-Al) alloy coating. Based on the salt spray corrosion test and microstructure analysis, the anti-corrosion resistance and corrosion appearance characteristics of the Zn-Al alloy coating and galvanized coating were investigated. The Zn-Al alloy coating was superior in resistance to corrosion fatigue for the improvement in toughness and the generation of anti-corrosion Zn-Al and Fe-Zn-Al phases. Equations of the accelerated corrosion depth of the steel wires had been regressed to roughly estimate the corrosion life of the Zn-Al alloy coating, which can reach 29.1 years with a thickness of 70 µm. The fatigue and mechanical properties of the bare wires after the salt spray test were further studied based on tensile tests and fatigue tests. The fatigue properties of the bridge cable wire would decrease with the corrosion degree due to the deterioration and embrittlement of materials, where ductility characterized by the elongation rate was the most affected. Fracture surfaces of the wires were captured and analyzed based on a method for recognizing graphical contours. Insufficient fatigue life may occur in the steel wires after corrosion and increase with the degree of corrosion. The pit depth logarithmically weakened the fatigue life of steel wires for the weakening of fatigue toughness and the bearing area. The flat fracture was more common with a single fatigue source, while multiple fatigue sources led to step-like fractures for the generation of multiple dispersed crack propagation regions. Corrosion fatigue was more sensitive to the existence of fatigue sources than the reduction. Multiple initiation sources significantly reduced the fatigue life due to the cracking facilitation of the joint effect of multiple pits. The electrochemical reactions of corrosion can lead to material embrittlement and a reducing effect on the fracture toughness of the steel wires.

2.
Materials (Basel) ; 17(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673188

ABSTRACT

Leaf springs are critical components for the railway vehicle safety in which they are installed. Although these components are produced in high-strength alloyed steel and designed to operate under cyclic loading conditions in the high-cyclic fatigue region, their failure is still possible, which can lead to economic and human catastrophes. The aim of this document was to precisely characterise the mechanical crack growth behaviour of the chromium-vanadium alloyed steel representative of leaf springs under cyclic conditions, that is, the crack propagation in mode I. The common fatigue crack growth prediction models (Paris and Walker) considering the effect of stress ratio and parameters such as propagation threshold, critical stress intensity factor and crack closure ratio were also determined using statistical methods, which resulted in good approximations with respect to the experimental results. Lastly, the fracture surfaces under the different test conditions were analysed using SEM, with no significant differences to declare. As a result of this research work, it is expected that the developed properties and fatigue crack growth prediction models can assist design and maintenance engineers in understanding fatigue behaviour in the initiation and propagation phase of cracks in leaf springs for railway freight wagons.

3.
J Sci Med Sport ; 27(6): 415-421, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38448345

ABSTRACT

PURPOSE: This study compares the acute effects of a static stretching and a warmup protocol on the active and passive shear modulus of the hamstring muscles. METHODS: Muscle shear modulus was assessed at rest and during isometric contractions at 20 % of maximal voluntary isometric contraction (MVIC). RESULTS: After stretching, the passive shear modulus pattern was not altered, while at 20 % MVIC the biceps femoris short head (BFsh) and semimembranosus showed a shear modulus increase and decrease, respectively, which resulted on BFsh-SM pair differences (pre: 3.8 ±â€¯16.8 vs. post: 39.3 ±â€¯25.1 kPa; p < 0.001; d = 1.66) which was accompanied by a decrease of 18.3 % on MVIC. Following the warmup protocol, passive shear modulus remained unchanged, while active shear modulus was decreased for the semitendinosus (pre: 65.3 ±â€¯13.5 vs. post: 60.3 ±â€¯12.3 kPa; p = 0.035; d = 0.4). However, this difference was within the standard error of measurement (10.54 kPa), and did not impact the force production, since it increased only 1.4 % after the warmup. CONCLUSIONS: The results of this study suggest that the passive and active shear modulus responses of the individual hamstring muscles to static stretching are muscle-specific and that passive and active hamstring shear modulus are not changed by a standard warmup intervention.


Subject(s)
Hamstring Muscles , Isometric Contraction , Muscle Stretching Exercises , Warm-Up Exercise , Humans , Hamstring Muscles/physiology , Muscle Stretching Exercises/physiology , Isometric Contraction/physiology , Male , Young Adult , Warm-Up Exercise/physiology , Adult , Elastic Modulus , Ultrasonography
4.
Chem Rec ; 24(3): e202300322, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38279622

ABSTRACT

The chemical modification of biopolymers like peptides and proteins is a key technology to access vaccines and pharmaceuticals. Similarly, the tunable derivatization of individual amino acids is important as they are key building blocks of biomolecules, bioactive natural products, synthetic polymers, and innovative materials. The high diversity of functional groups present in amino acid-based molecules represents a significant challenge for their selective derivatization Recently, visible light-mediated transformations have emerged as a powerful strategy for achieving chemoselective biomolecule modification. This technique offers numerous advantages over other methods, including a higher selectivity, mild reaction conditions and high functional-group tolerance. This review provides an overview of the most recent methods covering the photoinduced modification for single amino acids and site-selective functionalization in peptides and proteins under mild and even biocompatible conditions. Future challenges and perspectives are discussed beyond the diverse types of photocatalytic transformations that are currently available.


Subject(s)
Amino Acids , Proteins , Amino Acids/chemistry , Proteins/chemistry , Peptides/chemistry , Polymers
5.
J Biomech ; 163: 111957, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38266532

ABSTRACT

This study aimed to determine whether changes in hamstrings passive and active shear modulus after a warmup protocol are correlated. Twenty males without a history of hamstring strain injury participated. Muscle shear modulus was assessed using ultrasound-based shear wave elastography at rest and during isometric contractions at 20% of maximal voluntary isometric effort before and immediately after a warmup protocol. Changes in passive shear modulus did not seem to be associated with changes in active shear modulus. The results of this study suggest that changes in passive and active hamstring shear modulus are not associated after a standardized warmup intervention.


Subject(s)
Elasticity Imaging Techniques , Hamstring Muscles , Male , Humans , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Elastic Modulus/physiology , Hamstring Muscles/diagnostic imaging , Hamstring Muscles/physiology , Elasticity Imaging Techniques/methods , Ultrasonography
6.
Mater Horiz ; 11(3): 803-812, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38010915

ABSTRACT

In this work, we demonstrate, for the first time, that coupling together the pyroelectric effect, the photovoltaic effect and the plasmonic effect is a novel method to significantly enhance the performance of self-powered photodetectors in the visible region. Photodetectors based on tri-layered heterojunction of n-Si/p-SnO/n-ZnO through the inclusion of silver (Ag) nanoparticles (NPs) at the SnO/ZnO interface were fabricated. The photo-response of the device, with excitation from a chopped 650 nm wavelength laser, was carefully investigated, and it was shown that the photodetector performance is enhanced the most with the inclusion of spheroidal Ag NPs with ∼70 nm diameter. The Al/Si/SnO/Ag NPs/ZnO/ITO device exhibited an optimum responsivity, detectivity and sensitivity of 210.2 mA W-1, 5.47 × 109 Jones and 15.0 × 104, respectively, together with a rise and fall time of 2.3 and 51.3 µs, respectively, at a laser power density of 317 mW cm-2 and at a chopper frequency of 10 Hz. The present photodetectors are more than twice as responsive as the current best-performing ZnO-based pyro-phototronic photodetectors and they also exhibit other competitive features, such as detectivity, and fall and rise times. Therefore, by exploiting the plasmonic effect of the Ag NPs together with the pyroelectric effect in a ZnO film, and the photovoltaic effect at a Si/SnO junction, all in a single device, photodetectors were developed with state-of-the-art performance for the visible region.

7.
J Appl Physiol (1985) ; 136(1): 200-212, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38059285

ABSTRACT

Although the underlying mechanisms behind upper limb (e.g., finger) motor slowing during movements performed at the maximum voluntary rate have been explored, the same cannot be said for the lower limb. This is especially relevant considering the lower limb's larger joints and different functional patterns. Despite the similar motor control base, previously found differences in movement patterns and segment inertia may lead to distinct central and peripheral manifestations of fatigue in larger joint movement. Therefore, we aimed to explore these manifestations in a fatiguing knee maximum movement rate task by measuring brain and muscle activity, as well as brain-muscle coupling using corticomuscular coherence, during this task. A significant decrease in knee movement rate up to half the task duration was observed. After an early peak, brain activity showed a generalized decrease during the first half of the task, followed by a plateau, whereas knee flexor muscle activity showed a continuous decline. A similar decline was also seen in corticomuscular coherence but for both flexor and extensor muscles. The electrophysiological manifestations associated with knee motor slowing therefore showed some common and some distinct aspects compared with smaller joint tasks. Both central and peripheral manifestations of fatigue were observed; the changes seen in both EEG and electromyographic (EMG) variables suggest that multiple mechanisms were involved in exercise regulation and fatigue development.NEW & NOTEWORTHY The loss of knee movement rate with acute fatigue induced by high-speed movement is associated with both central and peripheral electrophysiological changes, such as a decrease in EEG power, increased agonist-antagonist cocontraction, and impaired brain-muscle coupling. These findings had not previously been reported for the knee joint, which shows functional and physiological differences compared with the existing findings for smaller upper limb joints.


Subject(s)
Knee Joint , Muscle Fatigue , Humans , Muscle Fatigue/physiology , Electromyography , Knee Joint/physiology , Lower Extremity , Muscle, Skeletal/physiology , Movement/physiology , Brain
8.
Philos Trans A Math Phys Eng Sci ; 381(2260): 20220406, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37742705

ABSTRACT

The development of machine learning (ML) provides a promising solution to guarantee the structural integrity of critical components during service period. However, considering the lack of respect for the underlying physical laws, the data hungry nature and poor extrapolation performance, the further application of pure data-driven methods in structural integrity is challenged. An emerging ML paradigm, physics-informed machine learning (PIML), attempts to overcome these limitations by embedding physical information into ML models. This paper discusses different ways of embedding physical information into ML and reviews the developments of PIML in structural integrity including failure mechanism modelling and prognostic and health management (PHM). The exploration of the application of PIML to structural integrity demonstrates the potential of PIML for improving consistency with prior knowledge, extrapolation performance, prediction accuracy, interpretability and computational efficiency and reducing dependence on training data. The analysis and findings of this work outline the limitations at this stage and provide some potential research direction of PIML to develop advanced PIML for ensuring structural integrity of engineering systems/facilities. This article is part of the theme issue 'Physics-informed machine learning and its structural integrity applications (Part 1)'.

9.
Sci Rep ; 13(1): 12624, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37537276

ABSTRACT

The purpose of the present study was to examine the acute effects of a maximum repeated sprint protocol on (1) hamstring shear modulus and (2) knee flexor neuromuscular parameters such as peak torque (PT) and rate of torque development (RTD). Muscle shear modulus was assessed in 18 healthy males using shear wave elastography at rest and during 30° isometric knee flexion at 20% of maximal voluntary isometric contraction, before and after a 10 × 30 m repeated sprint protocol. There was a 9% decrease in average speed between the fastest and slowest sprint (p < 0.001; d = 2.27). A pre-post decrease was observed in PT (p = 0.004; η2p = 0.399) and in the 0-50 ms (p = 0.042; η2p = 0.222), and 50-100 ms (p = 0.028; η2p = 0.254) RTD periods. For the active shear modulus, the only significant change after the sprint task was in the biceps femoris long head (BFlh) with an increase of 10% (Pre: 26.29 ± 8.89 kPa; Post: 28.93 ± 8.31 kPa; p = 0.015; d = 0.31). The present study provides evidence that repeated sprinting leads to significant decreases in average speed, PT, early RTD (0-50 ms; 50-100 ms), and to an increase in BFlh active shear modulus without changing the shear modulus of the other hamstrings muscles.


Subject(s)
Hamstring Muscles , Male , Humans , Hamstring Muscles/diagnostic imaging , Hamstring Muscles/physiology , Range of Motion, Articular/physiology , Knee , Knee Joint/diagnostic imaging , Knee Joint/physiology , Isometric Contraction/physiology , Torque , Muscle, Skeletal/physiology
10.
Int J Mol Sci ; 24(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37569580

ABSTRACT

This review provides an update on the current state of photodynamic therapy (PDT) for colorectal cancer (CRC) and explores potential future directions in this field. PDT has emerged as a promising minimally invasive treatment modality that utilizes photosensitizers and specific light wavelengths to induce cell death in targeted tumor tissues. In recent years, significant progress has been made in understanding the underlying mechanisms, optimizing treatment protocols, and improving the efficacy of PDT for CRC. This article highlights key advancements in PDT techniques, including novel photosensitizers, light sources, and delivery methods. Furthermore, it discusses ongoing research efforts and potential future directions, such as combination therapies and nanotechnology-based approaches. By elucidating the current landscape and providing insights into future directions, this review aims to guide researchers and clinicians in harnessing the full potential of PDT for the effective management of CRC.


Subject(s)
Colorectal Neoplasms , Photochemotherapy , Humans , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/pharmacology , Photochemotherapy/methods , Combined Modality Therapy , Nanotechnology/methods , Colorectal Neoplasms/drug therapy
11.
Small ; 19(32): e2300607, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37086105

ABSTRACT

Self-powered photodetectors (PDs) have been recognized as one of the developing trends of next-generation optoelectronic devices. Herein, it is shown that by introducing a thin layer of SnO film between the Si substrate and the ZnO film, the self-powered photodetector Al/Si/SnO/ZnO/ITO exhibits a stable and uniform violet sensing ability with high photoresponsivity and fast response. The SnO layer introduces a built-in electrostatic field to highly enhance the photocurrent by over 1000%. By analyzing energy diagrams of the p-n junction, the underlying physical mechanism of the self-powered violet PDs is carefully illustrated. A high photo-responsivity (R) of 93 mA W-1 accompanied by a detectivity (D*) of 3.1 × 1010 Jones are observed under self-driven conditions, when the device is exposed to 405 nm excitation laser wavelength, with a laser power density of 36 mW cm-2 and at a chopper frequency of 400 Hz. The Si/SnO/ZnO/ITO device shows an enhancement of 3067% in responsivity when compared to the Al/Si/ZnO/ITO. The photodetector holds an ultra-fast response of ≈ 2 µs, which is among the best self-powered photodetectors reported in the literature based on ZnO.

12.
Sci Rep ; 13(1): 4482, 2023 03 18.
Article in English | MEDLINE | ID: mdl-36934143

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a pandemic infection caused by the newly discovered severe acute respiratory syndrome coronavirus 2. Remdesivir (RDV) and corticosteroids are used mainly in COVID-19 patients with acute respiratory failure. The main objective of the study was to assess the effectiveness of remdesivir with and without corticosteroids in the treatment of COVID-19 patients. We conducted a prospective observational study, including adult patients consecutively hospitalized with confirmed COVID-19 and acute respiratory failure. Patients were divided according to treatment strategy: RDV alone versus RDV with corticosteroids. The primary outcome was the time to recovery in both treatment groups. We included 374 COVID-19 adult patients, 184 were treated with RDV, and 190 were treated with RDV and corticosteroid. Patients in the RDV group had a shorter time to recovery in comparison with patients in the RDV plus corticosteroids group at 28 days after admission [11 vs. 16 days (95% confidence Interval 9.7-12.8; 14.9-17.1; p = .016)]. Patients treated with RDV alone had a shorter length of hospital stay. The use of corticosteroids as adjunctive therapy of RDV was not associated with improvement in mortality of COVID-19 patients.


Subject(s)
COVID-19 , Respiratory Insufficiency , Adult , Humans , COVID-19 Drug Treatment , Adenosine Monophosphate/therapeutic use , Alanine/therapeutic use , Adrenal Cortex Hormones/therapeutic use , Antiviral Agents/therapeutic use , Respiratory Insufficiency/chemically induced
13.
Sports Biomech ; : 1-14, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36992664

ABSTRACT

This study examined the effects of fatigue on hamstring muscles and gluteus maximus passive and active shear modulus in hip extension (HE) and knee flexion (KF) at 20% of maximal voluntary isometric contraction performed until task failure. Measurements were taken before and after the fatigue tasks and the delta (post-pre) was calculated. No differences in the fatigue effects on passive shear modulus were seen between muscles nor between tasks. For the active shear modulus: a task × muscle interaction was seen (p = 0.002; η2p = 0.401). The results for the tasks separately demonstrated only a significant effect for muscle in KF (p < 0.001; η2p = 0.598), with different individual contributions identified between BFlh-SM (p = 0.006; d = 1.10), BFlh-ST (p = 0.001; d = 1.35) and SM-ST (p = 0.020; d = 0.91). The comparisons between tasks for each muscle demonstrated significant differences for SM (p = 0.025; d = 0.60) and ST (p = 0.026; d = 0.60); however, no differences were seen for BFlh (p = 0.062; d = 0.46). Therefore, fatigue effects induce different patterns on the hamstring muscles in HE and KF tasks when performed at 20% MVIC.

14.
J. Health Biol. Sci. (Online) ; 11(1): 1-5, Jan. 2023. tab, ilus
Article in English | LILACS | ID: biblio-1525600

ABSTRACT

We describe a clinical case of a pregnant patient with hyperemesis gravidarum who progressed to abortion, Wernicke's encephalopathy, and Korsakoff's psychosis, all related to thiamine deficiency. The patient presented symptoms of disorientation, nonspecific limb movements, and fever, initially treated with metronidazole and ceftriaxone for suspected infected abortion. Subsequently, the patient was diagnosed with retained and infected abortion, and thiamine replacement therapy was initiated with an intravenous loading dose of 900 mg/day. During hospitalization, the patient presented with tetraparesis, nystagmus, decreased level of consciousness, anterograde and retrograde amnesia, confabulation, and aphasia. Magnetic resonance imaging showed lesions in the pons, typical of Wernicke's encephalopathy. The patient was empirically treated with acyclovir and ampicillin and showed clinical improvement. The text also provides a brief narrative review of the literature on the topic.


Descrevemos um caso clínico de uma paciente grávida com hiperêmese gravídica que evoluiu para aborto, Encefalopatia de Wernicke e Psicose de Korsakoff, ambas relacionadas à deficiência de tiamina. A paciente apresentou sintomas de desorientação, movimentos inespecíficos dos membros e febre, sendo, inicialmente, tratada com metronidazol e ceftriaxona por suspeita de aborto infectado. Posteriormente, a paciente foi diagnosticada com aborto retido e infectado e iniciou-se a reposição de tiamina com dose endovenosa de ataque de 900 mg/dia. Durante o internamento, a paciente apresentou tetraparesia, nistagmo, rebaixamento do nível de consciência, amnésia anterógrada e retrógrada, confabulação e afasia. A ressonância magnética mostrou lesões na ponte, típicas da Encefalopatia de Wernicke. A paciente foi tratada com aciclovir e ampicilina empiricamente e apresentou melhoras no quadro clínico. O texto também faz uma breve revisão narrativa da literatura sobre o tema.


Subject(s)
Humans , Female , Pregnancy , Korsakoff Syndrome , Hyperemesis Gravidarum
15.
Chemistry ; 29(19): e202203625, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36571402

ABSTRACT

Sulfones and carboxylic acids are prominent motifs widely present in the chemical structure of agrochemicals, pharmaceuticals and many other highly valuable compounds. Herein, we describe a conjunctive strategy for the precise installation of these functionalities onto styrenes using sodium sulfinates and CO2 as coupling partners. The protocol allowed the preparation of carboxy-sulfonylated compounds in good yields and broad functional group tolerance. Additionally, taking advantage of the leaving group ability of the sulfone moiety, a one-pot photocatalytic carboxy-sulfonylation-elimination strategy was developed for the synthesis of α-aryl-acrylates.

16.
Cells ; 11(24)2022 12 10.
Article in English | MEDLINE | ID: mdl-36552759

ABSTRACT

Photodynamic therapy (PDT) has been used in recent years as a non-invasive treatment for cancer, due to the side effects of traditional treatments such as surgery, radiotherapy, and chemotherapy. This therapeutic technique requires a photosensitizer, light energy, and oxygen to produce reactive oxygen species (ROS) which mediate cellular toxicity. PDT is a useful non-invasive therapy for cancer treatment, but it has some limitations that need to be overcome, such as low-light-penetration depths, non-targeting photosensitizers, and tumor hypoxia. This review focuses on the latest innovative strategies based on the synergistic use of other energy sources, such as non-visible radiation of the electromagnetic spectrum (microwaves, infrared, and X-rays), ultrasound, and electric/magnetic fields, to overcome PDT limitations and enhance the therapeutic effect of PDT. The main principles, mechanisms, and crucial elements of PDT are also addressed.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/pharmacology , Neoplasms/drug therapy , Oxygen/therapeutic use , X-Rays
17.
Sensors (Basel) ; 22(24)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36560042

ABSTRACT

Polyimide is an emerging and very interesting material for substrate and passivation of neural probes. However, the standard curing temperature of polyimide (350 °C) is critical for the microelectrodes and contact pads of the neural probe, due to the thermal oxidation of the metals during the passivation process of the neural probe. Here, the fabrication process of a flexible neural probe, enhanced with a photosensitive and low-temperature cured polyimide, is presented. Annealing tests were performed with metallic films deposited on polyimide, which led to the reduction of the curing temperature to 250 °C, with no significant irregularities in the metallic sample annealed at that temperature and an effective polyimide curing. The use of a lower curing temperature reduces the thermal oxidation of the metals during the polyimide curing process to passivate the neural probe. Additionally, in this fabrication process, the microelectrodes of the neural probe were coated with electrodeposited platinum (Pt), only after the passivation process, and its electrochemical performance was accessed. At 1 kHz, the impedance of the microelectrodes before Pt electrodeposition was approximately 1.2 MΩ, and after Pt electrodeposition, it was approximately 350 kΩ. Pt electrodeposition changed the equivalent circuit of the microelectrodes and reduced their impedance, which will be crucial for future in-vivo tests to acquire the electrical activity of the neurons with the fabricated neural probe.


Subject(s)
Electroplating , Platinum , Electrodes, Implanted , Temperature , Microelectrodes
18.
Materials (Basel) ; 15(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36556609

ABSTRACT

Thin-film thermoelectrics (TEs) with a thickness of a few microns present an attractive opportunity to power the internet of things (IoT). Here, we propose screen printing as an industry-relevant technology to fabricate TE thin films from colloidal PbSe quantum dots (QDs). Monodisperse 13 nm-sized PbSe QDs with spherical morphology were synthesized through a straightforward heating-up method. The cubic-phase PbSe QDs with homogeneous chemical composition allowed the formulation of a novel ink to fabricate 2 µm-thick thin films through robust screen printing followed by rapid annealing. A maximum Seebeck coefficient of 561 µV K-1 was obtained at 143 °C and the highest electrical conductivity of 123 S m-1 was reached at 197 °C. Power factor calculations resulted in a maximum value of 2.47 × 10-5 W m-1 K-2 at 143 °C. To the best of our knowledge, the observed Seebeck coefficient value is the highest reported for TE thin films fabricated by screen printing. Thus, this study highlights that increased Seebeck coefficients can be obtained by using QD building blocks owing to quantum confinement.

19.
Allergy Asthma Clin Immunol ; 18(1): 74, 2022 Aug 13.
Article in English | MEDLINE | ID: mdl-35964111

ABSTRACT

INTRODUCTION: Although the prevalence of allergic diseases, including food allergies, has increased over recent decades, relevant information on this topic is still lacking, particularly in younger children living in small cities. OBJECTIVE: To investigate the prevalence of reported food allergies in preschoolers in Limoeiro/Pernambuco, Brazil. METHODS: This was a cross-sectional study with preschoolers. Parents/guardians of all preschoolers enrolled at municipal schools between March and June 2019 (total of 619) were invited to complete a screening questionnaire (total of 619). Another 151 questionnaires were applied on the streets of the town. For positive responses, a second, more detailed and validated questionnaire was completed. RESULTS: A total of 412 questionnaires were returned, of which, 47 presented a positive response to food allergies and only 29 (7.04%) identified a particular food. The most frequently reported food items were shrimp, mollusks, pork, fruit and milk. Of the 29 who identified foods, 22 responded to the detailed questionnaire, resulting in only 4 (0.97%) positive responses. Of these, two were later discarded through clinical examinations and an open oral provocation test, resulting in a final prevalence of 0.48% of confirmed food allergies. CONCLUSION: The prevalence of reported food allergies was lower than that described in previous studies. The most commonly mentioned foods were shrimp, mollusks and pork, with more reports of multiple food allergies, even in children who had never been previously exposed to these possible allergens, which highlights the relevance of perception in reported food allergy studies.

20.
Chem Commun (Camb) ; 58(60): 8322-8339, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35843219

ABSTRACT

The preparation of amide-containing compounds is among the most interesting and challenging topics for the synthetic community. Such relevance is given by their reactive aspects explored in the context of organic synthesis and by the direct application of these compounds as pharmaceuticals and useful materials, and their key roles in biological structures. A simple and straightforward strategy for the amide moiety installation is the use of carbamoyl radicals - this nucleophilic one-electron intermediate is prone to undergo a series of transformations, providing a range of structurally relevant derivatives. In this review, we summarize the latest advances in the field from the perspective of photoinduced protocols. To this end, their synthetic applications are organized accordingly to the nature of the radical precursor (formamides through HAT, 4-substituted-1,4-dihydropyridines, oxamic acids, and N-hydroxyphthalimido esters), the mechanistic aspects also being highlighted. The discussion also includes a recent approach proceeding via photolytic C-S cleavage of dithiocarbamate-carbamoyl intermediates. By exploring fundamental concepts, this material aims to offer an understanding of the topic, which will encourage and facilitate the design of new synthetic strategies applying the carbamoyl radical.


Subject(s)
Formamides , Protein Carbamylation , Amides , Chemistry Techniques, Synthetic
SELECTION OF CITATIONS
SEARCH DETAIL
...