Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Photochem Photobiol B ; 203: 111761, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31896050

ABSTRACT

The combination of different colors from light-emitting diodes (LEDs) may influence growth and production of secondary metabolites in plants. In the present study, the effect of light quality on morphophysiology and content of 20-hydroxyecdysone (20E), a phytoecdysteroid, was evaluated in accessions of an endangered medicinal species, Pfaffia glomerata, grown in vitro. Two accessions (Ac22 and Ac43) were cultured in vitro under three different ratios of red (R) and blue (B) LEDs: (i) 1R:1B, (ii) 1R:3B, and (iii) 3R:1B. An equal ratio of red and blue light (1R:1B) increased biomass accumulation, anthocyanin content, and 20E production (by 30-40%). Moreover, 1R:1B treatment increased the size of vascular bundles and vessel elements, as well as strengthened xylem lignification and thickening of the cell wall of shoots. The 1R:3B treatment induced the highest photosynthetic and electron transport rates and enhanced the activity of oxidative stress-related enzymes. Total Chl content, Chl/Car ratio, and NPQ varied more by accession type than by light source. Spectral quality affected primary metabolism differently in each accession. Specifically, in Ac22 plants, fructose content was higher under 1R:1B and 1R:3B treatments, whereas starch accumulation was higher under 1R:3B, and sucrose under 3R:1B. In Ac43 plants, sugars were not influenced by light spectral quality, but starch content was higher under 3R:1B conditions. In conclusion, red and blue LEDs enhance biomass and 20E production in P. glomerata grown in vitro.


Subject(s)
Amaranthaceae/radiation effects , Ecdysterone/analysis , Light , Amaranthaceae/growth & development , Amaranthaceae/metabolism , Anthocyanins/analysis , Biomass , Carotenoids/analysis , Catalase/metabolism , Chlorophyll/analysis , Chromatography, High Pressure Liquid , Plant Leaves/chemistry , Plant Proteins/metabolism , Plant Roots/chemistry , Plant Roots/growth & development , Plant Stems/chemistry , Plants, Medicinal/growth & development , Plants, Medicinal/metabolism , Plants, Medicinal/radiation effects , Starch/metabolism , Superoxide Dismutase/metabolism
2.
J Photochem Photobiol B ; 197: 111549, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31302348

ABSTRACT

Light is a key factor influencing growth and development in plants. Specific irradiance and light quality can improve development and production of secondary compounds such as carotenoids during plant tissue culture. Bixin and norbixin, two apocarotenoids obtained from the seeds of Bixa orellana L. (annatto), are used as natural dyes in various industries. While annatto tissue culture has been successful, the effect of light in this species remains poorly understood. Here, we analyze for the first time the effect of irradiance regime (50, 150, 50 + 150, 200, 50 + 200 µmol m-2 s-1) and light spectral quality (fluorescent, white, blue/red LED) on in vitro development of apexes and bixin content in two contrasting bixin-producing varieties of B. orellana, namely 'Piave Vermelha' and 'UESB74'. The number of leaves per plant, stomatal density, leaf area, leaf expansion, chlorophylls and carotenoids content, malondialdehyde and bixin content were analyzed in the leaves of both cultivars. 'Piave Vermelha' produced 1.6-fold more bixin than 'UESB74'. Stomata cells of both cultivars had a paracytic arrangement with peltate trichomes along the adaxial and abaxial leaf surfaces. 'Piave Vermelha' preferred blue/red LED light; whereas fluorescent light was optimal for 'UESB74'. Under fluorescent light, an irradiance of 50 µmol m-2 s-1 is indicated for both cultivars. LED light increased bixin content only in 'Piave Vermelha', suggesting that the dye biosynthetic pathway is genotype-dependent. The present findings suggest the possibility of using light to modulate the bixin biosynthetic pathway.


Subject(s)
Bixaceae/metabolism , Carotenoids/analysis , Light , Bixaceae/radiation effects , Carotenoids/metabolism , Chlorophyll/analysis , Fluorescence , Malondialdehyde/analysis , Plant Leaves/metabolism , Plant Leaves/radiation effects , Spectrometry, Mass, Electrospray Ionization
3.
Plant Physiol Biochem ; 140: 43-54, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31078783

ABSTRACT

- Salinity is a major threat to agriculture. However, depending on the concentration of soluble salts in soil, increased secondary metabolite levels can occur with no major damages to plant growth and development. The phytoecdysteroid (PE) 20-hydroxyecdysone (20E) is a secondary metabolite with biotechnological, medicinal, pharmaceutical and agrochemical applicability. Here, we characterize the responses (growth and physiology) of Pfaffia glomerata under different NaCl concentrations and examine the production of 20E as affected by salinity. Forty-day-old plants grown in greenhouse were exposed to 0, 120, 240, 360 or 480 mM of NaCl for 11 days. Moderate salinity (i.e., 120 mM of NaCl) led to increased 20E concentrations in leaves (47%) relative to the control with no significant effect on photosynthesis and biomass accumulation, thus allowing improved 20E contents on a per whole-plant basis. In contrast, plants under high salinity (i.e., 240-480 mM of NaCl) displayed similar 20E concentrations in leaves compared to the control, but with marked impairments to biomass accumulation and photosynthetic performance (coupled with decreased sucrose and starch levels) in parallel to nutritional imbalance. High salinity also strongly increased salicylic acid levels, antioxidant enzyme activities, and osmoregulatory status. Regardless of stress severity, 20E production was accompanied by the upregulation of Spook and Phantom genes. Our findings suggest that P. glomerata cultivation in moderate salinity soils can be considered as a suitable agricultural option to increase 20E levels, since metabolic and structural complexity that makes its artificial synthesis very difficult.


Subject(s)
Panax/metabolism , Sodium Chloride/pharmacology , Biomass , Ecdysterone/metabolism , Photosynthesis/drug effects , Salinity
SELECTION OF CITATIONS
SEARCH DETAIL
...