Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicon ; 238: 107568, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38110040

ABSTRACT

Most anti-inflammatory drugs currently adopted to treat chronic inflammatory joint diseases can alleviate symptoms but they do not lead to remission. Therefore, new and more efficient drugs are needed to block the course of joint inflammatory diseases. Animal venoms, rich in bioactive compounds, can contribute as valuable tools in this field of research. In this study, we first demonstrate the direct action of venoms on cells that constitute the articular joints. We established a platform consisting of cell-based assays to evaluate the release of cytokines (IL-6, IL-8, TNFα, IL-1ß, and IL-10) by human chondrocytes, synoviocytes and THP1 macrophages, as well as the release of neuropeptides (substance-P and ß-endorphin) by differentiated sensory neuron-like cells, 24 h after stimulation of cells with 21 animal venoms from snake and arthropod species, sourced from different taxonomic families and geographic origins. Results demonstrated that at non-cytotoxic concentrations, the venoms activate at varying degrees the secretion of inflammatory mediators involved in the pathology of articular diseases, such as IL-6, IL-8, and TNF-α by chondrocytes, synoviocytes, and macrophages and of substance P by neuron-like cells. Venoms of the Viperidae snake family were more inflammatory than those of the Elapidae family, while venoms of Arthropods were less inflammatory than snake venoms. Notably, some venoms also induced the release of the anti-inflammatory IL-10 by macrophages. However, the scorpion Buthus occitanus venom induced the release of IL-10 without increasing the release of inflammatory cytokines by macrophages. Since the cell types used in the experiments are crucial elements in joint inflammatory processes, the results of this work may guide future research on the activation of receptors and inflammatory signaling pathways by selected venoms in these particular cells, aiming at discovering new targets for therapeutic intervention.


Subject(s)
Animals, Poisonous , Arthropod Venoms , Arthropods , Joint Diseases , Scorpion Venoms , Scorpions , Viperidae , Animals , Humans , Interleukin-10 , Interleukin-6 , Interleukin-8 , Snake Venoms/chemistry , Cytokines , Tumor Necrosis Factor-alpha , Anti-Inflammatory Agents
2.
Nat Prod Res ; 32(12): 1383-1389, 2018 Jun.
Article in English | MEDLINE | ID: mdl-28659061

ABSTRACT

In efforts to find new antimicrobial peptides (AMPs), we studied the skin secretion of the endemic Colombian frog Dendropsophus columbianus belonging to a genus that has not been investigated previously. From HPLC-fractionated secretion, we identified one peptide with slightly antibacterial activity. Its peptide sequence showed no sequence similarity to current annotated peptides. We named this novel peptide dendropsophin 1 (Dc1). Afterward, two analogues were designed (Dc1.1 and Dc1.2) to improve the cationic and amphipathic features. Then, their antiproliferative and cytotoxic properties were evaluated against several pathogens including bacteria, fungi, protozoa and also mammalian cells. Dc1 and its two analogues exhibited moderate antibacterial activities and no hemolytic and cytotoxic effects on mammalian cells. Analogue Dc1.2 showed slightly improved antibacterial properties. Their secondary structures were characterised using CD spectroscopy and Dc1.2 displayed a higher α-helix content and thermal stability compared to Dc1 and Dc1.1 in hydrophobic experimental conditions.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Anura , Skin/metabolism , Animals , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Colombia , Drug Evaluation, Preclinical/methods , Hemolysis/drug effects , Hemolytic Agents/chemistry , Hemolytic Agents/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions , Male , Microbial Sensitivity Tests , Protein Stability , Protein Structure, Secondary , Rats , Sequence Homology, Amino Acid , Trypanosoma/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...