Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biotechnol ; 297: 71-77, 2019 May 20.
Article in English | MEDLINE | ID: mdl-30928538

ABSTRACT

With more than 50,000 members, terpenoids are one of the most important classes of natural products and show an enormous diversity. Due to their unique odors and specific bioactivities they already find wide application in the flavor, fragrance and pharma industries. Since most terpenoids can only be obtained by natural product extraction, the discovery of biosynthetic genes for the generation of terpene diversity becomes increasingly important. This study describes the discovery of three novel sesquiterpene synthases from Streptomyces chartreusis with preference for the formation of germacradiene-11-ol, α-eudesmol and α-amorphene respectively. The α-eudesmol synthase showed formation of 10-epi-δ-eudesmol and elemol as side products. Eudesmol-isomers are known to have repellent activity, which makes this enzyme a potential catalyst for products for the prevention of mosquito-related disease. The determination of the structure of the apo-enzyme of α-eudesmol synthase from S. chartreusis provides the first structural insights into an eudesmol-forming enzyme.


Subject(s)
Alkyl and Aryl Transferases/chemistry , Sesquiterpenes, Eudesmane/metabolism , Streptomyces/enzymology , Crystallography, X-Ray , Dynamic Light Scattering , Genetic Association Studies , Models, Molecular , Phylogeny , Sesquiterpenes, Eudesmane/chemistry , Streptomyces/genetics
2.
J Biotechnol ; 284: 68-74, 2018 Oct 20.
Article in English | MEDLINE | ID: mdl-30086321

ABSTRACT

Optically pure hydroxy amino acids show several bioactivities and are valuable building blocks for the pharmaceutical industry. Fe(II)/α-ketoglutarate dependent dioxygenases catalyze the hydroxylation or sulfoxidation of l-amino acids with high regio- and stereoselectivity. While several ß- and γ-specific enzymes have been described, only one δ-specific hydroxylase has been reported so far. Based on its similarity to the known l-leucine 5-hydroxylase from Nostoc punctiforme, an open reading frame from the cyanobacterium Anabaena variabilis was identified as putative l-leucine dioxygenase (AvLDO). Here we report the cloning and characterization of this dioxygenase. The enzyme showed a high preference for acidic conditions and moderate reaction temperatures. AvLDO catalyzed the regio- and stereoselective hydroxylation of several aliphatic amino acids in δ-position. In case of the sulfoxidation of l-methionine, AvLDO produced the opposite diastereomer than isoleucine dioxygenase. AvLDO is thus an interesting addition to the toolbox of Fe(II)/α-ketoglutarate dependent dioxygenases. On the genomic DNA of Anabaena variabilis ATCC 29413, the avldo gene is located on a gene cluster involved (2S,4S)-4-methylproline biosynthesis, which is contained in bioactive peptides often found from cyanobacteria. This fact suggests the metabolic functional role of this amino acid dioxygenase in cyanobacteria.


Subject(s)
Anabaena variabilis/enzymology , Dioxygenases/genetics , Cloning, Molecular , Dioxygenases/metabolism , Escherichia coli/genetics , Hydrogen-Ion Concentration , Hydroxylation , Leucine/metabolism , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...