Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Nat Genet ; 56(4): 721-731, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38622339

ABSTRACT

Coffea arabica, an allotetraploid hybrid of Coffea eugenioides and Coffea canephora, is the source of approximately 60% of coffee products worldwide, and its cultivated accessions have undergone several population bottlenecks. We present chromosome-level assemblies of a di-haploid C. arabica accession and modern representatives of its diploid progenitors, C. eugenioides and C. canephora. The three species exhibit largely conserved genome structures between diploid parents and descendant subgenomes, with no obvious global subgenome dominance. We find evidence for a founding polyploidy event 350,000-610,000 years ago, followed by several pre-domestication bottlenecks, resulting in narrow genetic variation. A split between wild accessions and cultivar progenitors occurred ~30.5 thousand years ago, followed by a period of migration between the two populations. Analysis of modern varieties, including lines historically introgressed with C. canephora, highlights their breeding histories and loci that may contribute to pathogen resistance, laying the groundwork for future genomics-based breeding of C. arabica.


Subject(s)
Coffea , Coffea/genetics , Coffee , Genome, Plant/genetics , Metagenomics , Plant Breeding
2.
Comput Struct Biotechnol J ; 23: 22-33, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38075396

ABSTRACT

The Rubiaceae plant family, comprising 3 subfamilies and over 13,000 species, is known for producing significant bioactive compounds such as caffeine and monoterpene indole alkaloids. Despite an increase in available genomes from the Rubiaceae family over the past decade, a systematic analysis of the metabolic gene clusters (MGCs) encoded by these genomes has been lacking. In this study, we aim to identify and analyze metabolic gene clusters within complete Rubiaceae genomes through a comparative analysis of eight species. Applying two bioinformatics pipelines, we identified 2372 candidate MGCs, organized into 549 gene cluster families (GCFs). To enhance the reliability of these findings, we developed coexpression networks and conducted orthology analyses. Using genomic data from Solanum lycopersicum (Solanaceae) for comparative purposes, we provided a detailed view of predicted metabolic enzymes, pathways, and coexpression networks. We bring some examples of MGCs and GCFs involved in biological pathways of terpenes, saccharides and alkaloids. Such insights lay the groundwork for discovering new compounds and associated MGCs within the Rubiaceae family, with potential implications in developing more robust crop species and expanding the understanding of plant metabolism. This large-scale exploration also provides a new perspective on the evolution and structure-function relationship of these clusters, offering opportunities for the highly efficient utilization of these unique metabolites. The outcome of this study contributes to a broader comprehension of the biosynthetic pathways, elucidating multiple aspects of specialized metabolism and offering innovative avenues for biotechnological applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...