Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Free Radic Res ; 58(4): 229-248, 2024.
Article in English | MEDLINE | ID: mdl-38588405

ABSTRACT

Selenium-containing compounds have emerged as promising treatment for redox-based and inflammatory diseases. This study aimed to investigate the in vitro and in vivo anti-inflammatory activity of a novel diselenide named as dibenzyl[diselanediyIbis(propane-3-1diyl)] dicarbamate (DD). DD reacted with HOCl (k = 9.2 x 107 M-1s-1), like glutathione (k = 1.2 x 108 M-1s-1), yielding seleninic and selenonic acid derivatives, and it also decreased HOCl formation by activated human neutrophils (IC50=4.6 µM) and purified myeloperoxidase (MPO) (IC50=3.8 µM). However, tyrosine, MPO-I and MPO-II substrates, did not restore HOCl formation in presence of DD. DD inhibited the oxidative burst in dHL-60 cells with no toxicity up to 25 µM for 48h. Next, an intraperitoneal administration of 25, 50, and 75 mg/kg DD decreased total leukocyte, neutrophil chemotaxis, and inflammation markers (MPO activity, lipid peroxidation, albumin exudation, nitrite, TNF-α, IL-1ß, CXCL1/KC, and CXCL2/MIP-2) on a murine model of carrageenan-induced peritonitis. Likewise, 50 mg/kg DD (i.p.) decreased carrageenan-induced paw edema over 5h. Histological and immunohistochemistry analyses of the paw tissue showed decreased neutrophil count, edema area, and MPO, carbonylated, and nitrated protein staining. Furthermore, DD treatment decreased the fMLP-induced chemotaxis of human neutrophils (IC50=3.7 µM) in vitro with no toxicity. Lastly, DD presented no toxicity in a single-dose model using mice (50 mg/kg, i.p.) over 15 days and in Artemia salina bioassay (50 to 2000 µM), corroborating findings from in silico toxicological study. Altogether, these results demonstrate that DD attenuates carrageenan-induced inflammation mainly by reducing neutrophil migration and the resulting damage from MPO-mediated oxidative burst.


Subject(s)
Carrageenan , Inflammation , Neutrophil Infiltration , Animals , Mice , Humans , Inflammation/drug therapy , Inflammation/chemically induced , Neutrophil Infiltration/drug effects , Male , Neutrophils/drug effects , Neutrophils/metabolism , Edema/drug therapy , Edema/chemically induced , Peroxidase/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Organoselenium Compounds/pharmacology , Organoselenium Compounds/therapeutic use , Hypochlorous Acid
2.
Macromol Rapid Commun ; 45(2): e2300470, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37716013

ABSTRACT

Herein, an evaluation of the initial step of benzoxazine polymerization is presented by mass spectrometry, with a focus on differentiating the phenoxy and phenolic products formed by distinct pathways of the cationic ring opening polymerization (ROP) mechanism of polybenzoxazine formation. The use of infrared multiple photon dissociation (IRMPD) and ion mobility spectrometry (IMS) techniques allows for differentiation of the two pathways and provides valuable insights into the ROP mechanism. The results suggest that type I pathway is favored in the initial stages of the reaction yielding the phenoxy product, while type II product should be observed at later stages when the phenoxy product would interconvert to the most stable type II phenolic product. Overall, the findings presented here provide important information on the initial step of the benzoxazine polymerization, allowing the development of optimal polymerization conditions and represents a way to evaluate other multifunctional polymerization processes.


Subject(s)
Benzoxazines , Phenols , Polymerization , Benzoxazines/chemistry , Phenols/chemistry , Cations
3.
J Phys Chem A ; 127(24): 5152-5161, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37285455

ABSTRACT

Cyclophosphamide (CP or CTX) is a widely used antineoplastic agent, and the evaluation of its efficacy and its impacts on the environment are dependent on tandem mass spectrometry (MSn) techniques. Because there is no dedicated experimental study to characterize the actual molecular nature of the CP fragments upon collision-induced dissociation, this work evaluated the chemical structure of the fragments of protonated and sodiated CP and CP protonation sites by infrared multiple photon dissociation spectroscopy supported by density functional theory calculations. This study allowed us to propose a new fragment structure and confirm the nature of multiple fragments, including those relevant for transitions used for CP quantitative and qualitative analyses. Our results also show that there is no spectroscopic evidence that can rule out the existence of aziridinium fragments, making it clear that further studies on the nature of iminium/aziridinium fragments in the gas phase are necessary.

4.
J Chem Phys ; 158(5): 054306, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36754805

ABSTRACT

Glyphosate is a widely used herbicide, and its protonation and deprotonation sites are fundamental to understanding its properties. In this work, the sodiated, protonated, and deprotonated glyphosate were evaluated in the gas phase by infrared multiple photon dissociation spectroscopy to determine the exact nature of these coordination, protonation, and deprotonation states in the gas phase. In this context, Natural Bond Orbital analyses were carried out to unravel interactions that govern glyphosate (de)protonation states in the gas phase. The solvent effect on the protonation/deprotonation equilibria was also investigated by implicit (Solvation Model Based on Density and polarizable continuum models) and explicit solvation models (Monte Carlo and Molecular Dynamics simulations). These results show that glyphosate is protonated in the phosphonate group in the gas phase because of the strong hydrogen bond between the carboxylic oxygen (O7) and the protonated phosphonate group (O8-H19), while the most stable species in water is protonated at the amino group because of the preferential interaction of the NH2 + group and the solvent water molecules. Similarly, deprotonated glyphosate [Glyp-H]- was shown to be deprotonated at the phosphonate group in the gas phase but not in solution, also because of the preferential solvation of the NH2 + group present in the other deprotomers. Therefore, these results show that the stabilization of the protonated amino group by the solvent molecules is the governing factor of the (de)protonation equilibrium of glyphosate in water.

5.
Phys Chem Chem Phys ; 23(35): 19659-19672, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34524295

ABSTRACT

Protonation equilibria are known to vary from the bulk to microdroplet conditions, which could induce many chemical and physical phenomena. Protonated p-aminobenzoic acid (PABA + H+) can be considered a model for probing the protonation dynamics in an evaporating droplet, as its protonation equilibrium is highly dependent on the formation conditions from solution via atmospheric pressure ionization sources. Experiments using diverse experimental techniques have shown that protic solvents allow formation of the O-protomer (PABA protonated in the carboxylic acid group) stable in the gas phase, while aprotic solvents yield the N-protomer (protonated in the amino group) that is the most stable protomer in solution. In this work, we explore the protonation equilibrium of PABA solvated by different numbers of water molecules (n = 0 to 32) using ab initio molecular dynamics. For n = 8-32, the protonation is either at the NH2 group or in the solvent network. The solvent network interacts with the carboxylic acid group, but there is no complete proton transfer to form the O-protomer. For smaller clusters, however, solvent-mediated proton transfers to the carboxylic acid were observed, both via the Grotthuss mechanism and the vehicle or shuttle mechanism (for n = 1 and 2). Thermodynamic considerations allowed a description of the origins of the kinetic trapping effect, which explains the observation of the solution structure in the gas phase. This effect likely occurs in the final evaporation steps, which are outside the droplet size range covered by previous classical molecular dynamics simulations of charged droplets. These results may be considered relevant in determining the nature of the species observed in the ubiquitous ESI based mass spectrometry analysis, and in general for droplet chemistry, explaining how protonation equilibria are drastically changed from bulk to microdroplet conditions.

6.
Rapid Commun Mass Spectrom ; 34 Suppl 3: e8635, 2020 Sep.
Article in English | MEDLINE | ID: mdl-31677291

ABSTRACT

RATIONALE: Methods for isomer discrimination by mass spectroscopy are of increasing interest. Here we describe the development of a three-dimensional ion trap for infrared multiple photon dissociation (IRMPD) spectroscopy that enables the acquisition of the infrared spectrum of selected ions in the gas phase. This system is suitable for the study of a myriad of chemical systems, including isomer mixtures. METHODS: A modified three-dimensional ion trap was coupled to a CO2 laser and an optical parametric oscillator/optical parametric amplifier (OPO/OPA) system operating in the range 2300 to 4000 cm-1 . Density functional theory vibrational frequency calculations were carried out to support spectral assignments. RESULTS: Detailed descriptions of the interface between the laser and the mass spectrometer, the hardware to control the laser systems, the automated system for IRMPD spectrum acquisition and data management are presented. The optimization of the crystal position of the OPO/OPA system to maximize the spectroscopic response under low-power laser radiation is also discussed. CONCLUSIONS: OPO/OPA and CO2 laser-assisted dissociation of gas-phase ions was successfully achieved. The system was validated by acquiring the IRMPD spectra of model species and comparing with literature data. Two isomeric alkaloids of high economic importance were characterized to demonstrate the potential of this technique, which is now available as an open IRMPD spectroscopy facility in Brazil.

7.
ChemCatChem, mai. 2020
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3055

ABSTRACT

A mild stereo- and regioselective Cu-catalyzed hydroboration method for the synthesis of (Z)-seleno-alkenyl boronates and (Z)-thio-alkenylboronates from internal alkynes in the presence of commercially available B2pin2 is presented. This highly selective transformation relies on the use of N-heterocyclic carbene (NHC) complex IPrCuCl as the active catalytic species. We also explore the functionalization of the alkenylboronates obtained via oxidation to give a -chalcogeno ketones, useful building blocks for the synthesis of more complex chalcogen-containing molecules.

8.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17705

ABSTRACT

A mild stereo- and regioselective Cu-catalyzed hydroboration method for the synthesis of (Z)-seleno-alkenyl boronates and (Z)-thio-alkenylboronates from internal alkynes in the presence of commercially available B2pin2 is presented. This highly selective transformation relies on the use of N-heterocyclic carbene (NHC) complex IPrCuCl as the active catalytic species. We also explore the functionalization of the alkenylboronates obtained via oxidation to give a -chalcogeno ketones, useful building blocks for the synthesis of more complex chalcogen-containing molecules.

9.
European J Org Chem ; 2019(22): 3560-3566, 2019 Jun 16.
Article in English | MEDLINE | ID: mdl-31680777

ABSTRACT

Lanthanide triflates are effective Lewis acid catalysts in reactions involving carbonyl compounds due to their high oxophilicity and water stability. Despite the growing interest, the identity of the catalytic species formed in lanthanide catalysed reactions is still unknown. We have therefore used mass spectrometry and ion spectroscopy to intercept and characterize the intermediates in a reaction catalysed by ytterbium and dysprosium triflates. We were able to identify a number of lanthanide intermediates formed in a simple condensation reaction between a C-acid and an aldehyde. Results show correlation between the reactivity of lanthanide complexes and their charge state and suggest that the triply charged complexes play a key role in lanthanide catalysed reactions. Spectroscopic data of the gaseous ions accompanied by theoretical calculations reveal that the difference between catalytic efficiencies of ytterbium and dysprosium ions can be explained by their different electrophilicity.

10.
J Phys Chem B ; 122(43): 9860-9868, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30226774

ABSTRACT

Tacrolimus (TAC) is an efficient immunosuppressant used in organ transplantation procedures. There is an intrinsic correlation between TAC and Ca2+ because of the dependence of its action mechanism on calcium and calcineurin, and the role of ion coordination on TAC identification and quantitation. To depict the Ca2+ binding sites in TAC, this work carried out gas-phase vibrational infrared multiple photon dissociation spectroscopy of [Ca(TAC)]2+ and of three other TAC mimetic molecules (probes 1-3). Density functional theory (DFT) and Monte Carlo (MC) simulations were also used to support the experimental data assignment, and natural bond orbital (NBO) analysis was carried out to depict the coordination sphere. PM3 and B3LYP/6-31G(d) levels of theory displayed similar trends during the MC simulations, suggesting that PM3 is a viable alternative to more expensive DFT calculations, at least during the conformational analysis step. Infrared spectroscopy of the [Ca(probe X)1]2+ and [Ca(probe X)3]2+ ( X = 1-3) complexes allowed for a useful guide for building guess geometries and for the band assignment of the [Ca(TAC)]2+ complex. Nevertheless, the MC approach was particularly useful for exploring the potential energy surface. The lowest energy conformation for [Ca(TAC)]2+ was found by MC simulations and is 32.92 kJ mol-1 lower in energy than the one found by comparing the results obtained for Ca2+ coordination in probes, despite the calculated spectra being virtually identical. Both approaches are good ways to depict the coordination sites, and these results suggest that using small molecules as models is a reliable approach to depict the geometry or coordination sites of extensive ions, yielding a robust correlation between experimental and theoretical spectra. Furthermore, MC survey produced a lower energy conformation with a good match to the experimental results. Both methods depict the Ca2+ coordination sphere as a hexacoordinated environment where the main coordination centers are carbonyl groups.


Subject(s)
Calcium/chemistry , Spectrophotometry, Infrared , Tacrolimus/chemistry , Binding Sites , Density Functional Theory , Ions/chemistry , Molecular Conformation , Monte Carlo Method , Photons , Thermodynamics
11.
Photochem Photobiol ; 94(5): 853-864, 2018 09.
Article in English | MEDLINE | ID: mdl-29412460

ABSTRACT

Betanin (betanidin 5-O-ß-D-glucoside) is a water-soluble plant pigment used as a color additive in food, drugs and cosmetic products. Despite its sensitivity to light and heat, betanin maintains appreciable tinctorial strength in low acidic and neutral conditions, where the color of other plant pigments, such as anthocyanins, quickly fades. However, betanin is an iminium natural product that experiences acid- and base-catalyzed hydrolysis to form the fairly stable betalamic acid and cyclo-DOPA-5-O-ß-D-glucoside. Here, we show that the decomposition of betanin in aqueous phosphate solution pH 2-11 is subject to general base catalysis by hydrogen phosphate ion and intramolecular general acid and base catalysis, providing new insights on the mechanism of betanin hydrolysis. UV/Vis absorption spectrophotometry, 1 H NMR spectroscopy and mass spectrometry were used to investigate product formation. Furthermore, theoretical calculations support the hypothesis that the nitrogen atom of the tetrahydropyridine ring of betanin is doubly protonated, as observed for structurally simpler amino dicarboxylic acids. Our results contribute to the study of betanin and other pigments belonging to the class of betalains and to deepen the knowledge on the chemical properties of imino acids as well as on iminium-catalyzed modifications of carbonyl compounds in water.

12.
ACS Omega ; 2(8): 4431-4439, 2017 Aug 31.
Article in English | MEDLINE | ID: mdl-31457735

ABSTRACT

Hypervalent tellurium compounds (telluranes) are promising therapeutical agents with negligible toxicities for some diseases in animal models. The C-Te bond of organotellurium compounds is commonly considered unstable, disfavoring their applicability in biological studies. In this study, the stability of a set of telluranes composed of an inorganic derivative and noncharged and charged organic derivatives was monitored in aqueous media with 1H, 13C, and 125Te NMR spectroscopy and high-resolution mass spectrometry. Organic telluranes were found to be remarkably resistant and stable to hydrolysis, whereas the inorganic tellurane AS101 is totally converted to the hydrolysis product, trichlorooxytellurate, [TeOCl 3 ]-, which was also observed in the hydrolysis of TeCl 4 . The noteworthy stability of organotelluranes in aqueous media makes them prone to further structure-activity relationship studies and to be considered for broad biological investigations.

13.
J Phys Chem A ; 120(10): 1644-51, 2016 Mar 17.
Article in English | MEDLINE | ID: mdl-26911457

ABSTRACT

A recent report has shown that siloxides can undergo an unusual Me/F exchange reaction promoted by NF3 in the gas phase ( Angew. Chem. Int. Ed. 2012, 51, 8632-8635). A more extensive study of this kind of exchange has been carried out using mass spectrometry techniques (FT-ICR), DFT calculations, natural bond orbital (NBO) analysis, and Born-Oppenheimer molecular dynamics simulations (BOMD), using NF3, SO2F2, and CF4 as fluorine donors and evaluating the effect of replacing the Si center by Ge and C. This comprehensive approach shows that NF3 is crucial for the exchange reaction, as SO2F2 forms SO3F(-) via a pentacoordinated channel whereas no reaction is observed for CF4. The uniqueness of NF3 is caused by favorable thermochemical consideration and by dynamic effects that preclude the formation of the ubiquitous Si-F pentacoordinated species. Me3GeO(-) was shown to be as reactive as siloxides toward NF3, whereas C analogs showed no reactions under our experimental conditions. The exchange reaction was also shown to take place for triethylsiloxides. These exchange reactions are examples of reaction systems that avoid the lower energy pathway and are driven by dynamic effects that cannot be explained by the potential energy surface.

15.
J Am Chem Soc ; 134(46): 19004-10, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23106516

ABSTRACT

Well-established statistical approaches such as transition-state theory based on high-level calculated potential energy profiles are unable to account for the selectivity observed in the gas-phase OH(-) + CH(3)ONO(2) reaction. This reaction can undergo bimolecular nucleophilic displacement at either the carbon center (S(N)2@C) or the nitrogen center (S(N)2@N) as well as a proton abstraction followed by dissociation (E(CO)2) pathway. Direct dynamics simulations yield an S(N)2:E(CO)2 product ratio in close agreement with experiment and show that the lack of reactivity at the nitrogen atom is due to the highly negative electrostatic potential generated by the oxygen atoms in the ONO(2) group that scatters the incoming OH(-). In addition to these dynamical effects, the nonstatistical behavior of these reactions is attributed to the absence of equilibrated reactant complexes and to the large number of recrossings, which might be present in several ion-molecule gas-phase reactions.

16.
Angew Chem Int Ed Engl ; 51(34): 8632-5, 2012 Aug 20.
Article in English | MEDLINE | ID: mdl-22782656

ABSTRACT

Exchange Me for a fluorine: Trimethylsiloxide ions in the presence of NF(3) in the gas phase undergo an unusual and sequential metathesis-type reaction wherein methyl groups are exchanged for fluorine. Theoretical calculations suggest that the reaction proceeds by a three-step internal-nucleophilic-displacement mechanism which features a pentacoordinated siliconate species as a transition state rather than as an intermediate.


Subject(s)
Fluorine/chemistry , Siloxanes/chemistry , Gases , Ions , Mass Spectrometry , Models, Chemical , Models, Molecular
17.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 10): o2755-6, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-22065310

ABSTRACT

The central 1,3-oxazolidine-2-thione ring in the title compound, C(17)H(15)NO(3)S, is approximately planar with maximum deviations of 0.036 (4) and -0.041 (5) Šfor the O and methyl-ene-C atoms, respectively. The dihedral angles formed between this plane and the two benzene rings, which lie to the same side of the central plane, are 86.5 (2) [ring-bound benzene] and 50.6 (3)°. The ethan-1-one residue is also twisted out of the central plane, forming a O-C-N-C torsion angle of 151.5 (5)°. The dihedral angle formed by the benzene rings is 62.8 (2)° so that overall, the mol-ecule has a twisted U-shape. In the crystal, mol-ecules are linked into supra-molecular arrays two mol-ecules thick in the bc plane through C-H⋯O, C-H⋯S and C-H⋯π inter-actions.

18.
J Phys Chem A ; 114(44): 11910-9, 2010 Nov 11.
Article in English | MEDLINE | ID: mdl-20961139

ABSTRACT

There has been increasing interest in the gas-phase reactivity of alkyl nitrates because of their well-known applications as explosives and because of their role in atmospheric and in marine processes. This manuscript describes an experimental study by FT-ICR techniques of the gas-phase reactions of OH(-) and F(-) with methyl and ethyl nitrate. For methyl nitrate, the main reaction channel is found to be an elimination process promoted by abstraction of an α proton from the methyl group. Nucleophilic displacement of nitrate anion through an S(N)2 process at the carbon center is also found to be an important reaction channel with methyl nitrate. In ethyl nitrate, formation of NO(3)(-) is greatly enhanced and this is attributed to the ease of an E2-type elimination process promoted by proton abstraction at the ß position of the ethyl group. Theoretical calculations at the MP2/6-311+G(3df,2p)//MP2/6-31+G(d) level of theory are consistent with the relative importance of the reaction channels and suggest that these reactions proceed through a double well potential. The calculations also predict that nucleophilic attack by OH(-) at the nitrogen center (Sn2@N) is energetically the preferred pathway but experiments with (18)OH(-) showed no evidence for this channel. Single-point calculations reveal a strong preference for approach to the carbon center and may explain the lack of reactivity at the nitrogen center. Calculations were also carried out for NH(2)(-) and SH(-) to establish the reactivity pattern to provide a better understanding of environmentally relevant nitrate esters.

19.
J Am Chem Soc ; 132(42): 14733-5, 2010 Oct 27.
Article in English | MEDLINE | ID: mdl-20886878

ABSTRACT

Results from infrared photodissociation (IRPD) spectroscopy and kinetics of singly hydrated, protonated proline indicate that the water molecule hydrogen bonds preferentially to the formally neutral carboxylic acid at low temperatures and at higher temperatures to the protonated N-terminus, which bears the formal charge. Hydration isomer populations obtained from IRPD kinetic data as a function of temperature are used to generate a van't Hoff plot that reveals that C-terminal binding is enthalpically favored by 4.2-6.4 kJ/mol, whereas N-terminal binding is entropically favored by 31-43 J/(mol K), consistent with a higher calculated barrier for water molecule rotation at the C-terminus.


Subject(s)
Entropy , Proline/chemistry , Hydrogen Bonding , Protons , Spectrum Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...