Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 15(7): 514, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025841

ABSTRACT

Prostate cancer exhibits high prevalence and accounts for a high number of cancer-related deaths. The discovery and characterization of molecular determinants of aggressive prostate cancer represents an active area of research. The Immediate Early Response (IER) family of genes, which regulate Protein Phosphatase 2A (PP2A) activity, has emerged among the factors that influence cancer biology. Here, we show that the less studied member of this family, Immediate Early Response 5 like (IER5L), is upregulated in aggressive prostate cancer. Interestingly, the upregulation of IER5L expression exhibits a robust association with metastatic disease in prostate and is recapitulated in other cancer types. In line with this observation, IER5L silencing reduces foci formation, migration and invasion ability in a variety of human and murine prostate cancer cell lines. In vivo, using zebrafish and immunocompromised mouse models, we demonstrate that IER5L-silencing reduces prostate cancer tumor growth, dissemination, and metastasis. Mechanistically, we characterize the transcriptomic and proteomic landscapes of IER5L-silenced cells. This approach allowed us to identify DNA replication and monomeric G protein regulators as downstream programs of IER5L through a pathway that is consistent with the regulation of PP2A. In sum, we report the alteration of IER5L in prostate cancer and beyond and provide biological and molecular evidence of its contribution to tumor aggressiveness.


Subject(s)
Disease Progression , Prostatic Neoplasms , Protein Phosphatase 2 , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Humans , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics , Animals , Mice , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Zebrafish , Cell Movement/genetics , Cell Proliferation
2.
Cancer Res ; 79(24): 6153-6165, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31594836

ABSTRACT

The PPARγ coactivator 1 alpha (PGC1α) is a prostate tumor suppressor that controls the balance between anabolism and catabolism. PGC1A downregulation in prostate cancer is causally associated with the development of metastasis. Here we show that the transcriptional complex formed by PGC1α and estrogen-related receptor 1 alpha (ERRα) controls the aggressive properties of prostate cancer cells. PGC1α expression significantly decreased migration and invasion of various prostate cancer cell lines. This phenotype was consistent with remarkable cytoskeletal remodeling and inhibition of integrin alpha 1 and beta 4 expression, both in vitro and in vivo. CRISPR/Cas9-based deletion of ERRα suppressed PGC1α regulation of cytoskeletal organization and invasiveness. Mechanistically, PGC1α expression decreased MYC levels and activity prior to inhibition of invasiveness. In addition, PGC1α and ERRα associated at the MYC promoter, supporting the inhibitory activity PGC1α. The inverse correlation between PGC1α-ERRα activity and MYC levels was corroborated in multiple prostate cancer datasets. Altogether, these results support that PGC1α-ERRα functions as a tumor-suppressive transcriptional complex through the regulation of metabolic and signaling events. SIGNIFICANCE: These findings describe how downregulation of the prostate tumor suppressor PGC1 drives invasiveness and migration of prostate cancer cells.


Subject(s)
Gene Expression Regulation, Neoplastic , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Prostatic Neoplasms/genetics , Proto-Oncogene Proteins c-myc/genetics , Receptors, Estrogen/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Datasets as Topic , Humans , Male , Neoplasm Invasiveness/genetics , Promoter Regions, Genetic/genetics , Prostatic Neoplasms/pathology , Signal Transduction/genetics , Transcription, Genetic , ERRalpha Estrogen-Related Receptor
SELECTION OF CITATIONS
SEARCH DETAIL
...