Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Heliyon ; 10(9): e30291, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38737258

ABSTRACT

Policosanols (PCs) are bioactive compounds extracted from different natural waxes. In this work, the purification, characterization and assessment of the antioxidant and anti-inflammatory activity was carried out on PCs from an innovative source, i.e. a waxy material from supercritical-fluid extraction (SFE) of non-psychoactive Cannabis sativa L. (hemp) inflorescences. Starting from this material, PCs were obtained by microwave-assisted trans-esterification and hydrolysis, followed by preparative liquid chromatography under normal phase conditions. The purified product was characterized using high-performance liquid chromatography (HPLC) with an evaporative light scattering detector (ELSD). In vitro cell-free and cell-based antioxidant and anti-inflammatory assays were then performed to assess their bioactivity. HPLC-ELSED analysis of the purified mixture from hemp wax revealed C26OH and C28OH as the main compounds. In vitro assays indicated an inhibition of intracellular reactive oxygen species (ROS) production, a reduction of nuclear factor kappa B (NF-κB) activation and of the activity of the neutrophil elastase. Immunoblotting assays allowed us to hypothesize the mechanism of action of the compounds of interest, given the higher levels of MAPK-activated protein kinase 2 (MK2) and heme oxygenase-1 (HO-1) protein expression in the PC pretreated HaCaT cells. In conclusion, even if more research is needed to unveil other molecular mechanisms involved in hemp PC activity, the results of this work suggest that these compounds may have potential for use in oxinflammation processes.

2.
Drugs Context ; 132024.
Article in English | MEDLINE | ID: mdl-38817801

ABSTRACT

Type 2 inflammation is a heterogeneous condition due to the complex activation of different immunological pathways. Rapid progress in research to evaluate the efficacy of biologics for chronic rhinosinusitis with nasal polyps and asthma has led to the availability of effective therapeutic options. These drugs are safe, but temporary iatrogenic hypereosinophilia may sometimes be associated with clinical symptoms or organ damage. Here, we describe a case of severe hypereosinophilia in a patient with chronic rhinosinusitis with nasal polyps and asthma treated with dupilumab and a subsequent therapeutic shift to mepolizumab that led to maintenance of symptom control and concomitant normalization of blood eosinophil count.

3.
J Int Med Res ; 52(4): 3000605241246740, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38676539

ABSTRACT

Asthma is a disease characterised by heterogeneous and multifaceted airway inflammation. Despite the availability of effective treatments, a substantial percentage of patients with the type 2 (T2)-high, but mainly the T2-low, phenotype complain of persistent symptoms, airflow limitation, and poor response to treatments. Currently available biologicals target T2 cytokines, but no monoclonal antibodies or other specific therapeutic options are available for non-T2 asthma. However, targeted therapy against alarmins is radically changing this perspective. The development of alarmin-targeted therapies, of which tezepelumab (TZP) is the first example, may offer broad action on inflammatory pathways as well as an enhanced therapeutic effect on epithelial dysfunction. In this regard, TZP demonstrated positive results not only in patients with severe T2 asthma but also those with non-allergic, non-eosinophilic disease. Therefore, it is necessary to identify clinical features of patients who can benefit from an upstream targeted therapy such as anti-thymic stromal lymphopoietin. The aims of this narrative review are to understand the role of alarmins in asthma pathogenesis and epithelial dysfunction, examine the rationale underlying the indication of TZP treatment in severe asthma, summarise the results of clinical studies, and recognise the specific characteristics of patients potentially eligible for TZP treatment.


Subject(s)
Anti-Asthmatic Agents , Antibodies, Monoclonal, Humanized , Asthma , Patient Selection , Humans , Anti-Asthmatic Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Asthma/drug therapy , Cytokines/metabolism , Cytokines/antagonists & inhibitors , Severity of Illness Index , Thymic Stromal Lymphopoietin
4.
Animals (Basel) ; 14(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38396577

ABSTRACT

Hermetia illucens is a promising insect due to its ability to convert low-value substrates as food chain by-products into highly nutritious feed. Its feeding and nutrition are important issues. The aim of this work was to investigate the effect of different substrates consisting of coffee silverskin, a by-product of the roasting process, enriched with different inclusions of microalgae (5%, 10%, 20%, and 25%), Schizochytrium limacinum, and Isochrysis galbana, combined with the assessment of environmental sustainability by LCA. In general, the addition of microalgae led to an increase in larval growth performance due to the higher content of protein and lipids, although S. limacinum showed the best results with respect to larvae fed with coffee silverskin enriched with I. galbana. A higher prepupal weight was observed in larvae fed with 10%, 20%, and 25% S. limacinum; shorter development times in larvae fed with 25% of both S. limacinum and I. galbana; and a higher growth rate in larvae fed with 25% S. limacinum. The 10% S. limacinum inclusion was only slightly different from the higher inclusions. Furthermore, 10% of S. limacinum achieved the best waste reduction index. The greater the inclusion of microalgae, the greater the environmental impact of larval production. Therefore, the addition of 10% S. limacinum appears to be the best compromise for larval rearing, especially considering that a higher inclusion of microalgae did not yield additional benefits in terms of the nutritional value of H. illucens prepupae.

5.
Heliyon ; 10(1): e24196, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38268604

ABSTRACT

The discovery of the interactome of cannabidiol (CBD), a non-psychoactive cannabinoid from Cannabis sativa L., has been here performed on chronic myelogenous leukemia cancer cells, using an optimized chemo-proteomic stage, which links Drug Affinity Responsive Target Stability with Limited Proteolysis Multiple Reaction Monitoring approaches. The obtained results showed the ability of CBD to target simultaneously some potential protein partners, corroborating its well-known poly-pharmacology activity. In human chronic myelogenous leukemia K562 cancer cells, the most fascinating protein partner was identified as the 116 kDa U5 small nuclear ribonucleoprotein element called EFTUD2, which fits with the spliceosome complex. The binding mode of this oncogenic protein with CBD was clarified using mass spectrometry-based and in silico analysis.

6.
Expert Rev Respir Med ; 17(7): 563-575, 2023.
Article in English | MEDLINE | ID: mdl-37452692

ABSTRACT

INTRODUCTION: Approximately 3-10% of people with asthma have severe asthma (SA). Patients with SA have greater impairment in daily life and much higher costs. Even if asthma affects the entire bronchial tree, small airways have been recognized as the major site of airflow limitation. There are several tools for studying small airway dysfunction (SAD), but certainly the most interesting is oscillometry. Despite several studies, the clinical usefulness of oscillometry in asthma is still in question. This paper aims to provide evidence supporting the use of oscillometry to improve the management of SA in clinical practice. AREAS COVERED: In the ATLANTIS study, SAD was strongly evident across all severity. Various tools are available for evaluation of SAD, and certainly an integrated use of these can provide complete and detailed information. However, the most suitable method is oscillometry, implemented for clinical routine by using either small pressure impulses or small pressure sinusoidal waves. EXPERT OPINION: Oscillometry, despite its different technological implementations is the best tool for determining the impact of SAD on asthma and its control. Oscillometry will also be increasingly useful for choosing the appropriate drug, and there is ample room for a more widespread diffusion in clinical practice.


Subject(s)
Asthma , Humans , Oscillometry/methods , Spirometry/methods , Asthma/diagnosis , Asthma/therapy , Lung
7.
Phytother Res ; 37(5): 1924-1937, 2023 May.
Article in English | MEDLINE | ID: mdl-36583304

ABSTRACT

Neuropathic pain (NP) is a chronic disease that affects the normal quality of life of patients. To date, the therapies available are only symptomatic and they are unable to reduce the progression of the disease. Many studies reported the efficacy of Cannabis sativa L. (C. sativa) on NP, but no Δ9 -tetrahydrocannabinol (Δ9 -THC)-free extracts have been investigated in detail for this activity so far. The principal aim of this work is to investigate the potential pain-relieving effect of innovative cannabidiol-rich non-psychotropic C. sativa oils, with a high content of terpenes (K2), compared to the same extract devoid of terpenes (K1). Oral administration of K2 (25 mg kg-1 ) induced a rapid and long-lasting relief of pain hypersensitivity in a mice model of peripheral neuropathy. In spinal cord samples, K2 reduced mitogen-activated protein kinase (MAPKs) levels and neuroinflammatory factors. These effects were reverted by the administration of a CB2 antagonist (AM630), but not by a CB1 antagonist (AM251). Conversely, K1 showed a lower efficacy in the absence of CB1/CB2-mediated mechanisms. In LPS-stimulated murine microglial cells (BV2), K2 reduced microglia pro-inflammatory phenotype through the downregulation of histone deacetylase 1 (HDAC-1) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (IKBα) and increased interleukin-10 (IL-10) expression, an important antiinflammatory cytokine. In conclusion, these results suggested that K2 oral administration attenuated NP symptoms by reducing spinal neuroinflammation and underline the important role of the synergism between cannabinoids and terpenes.


Subject(s)
Cannabidiol , Cannabis , Neuralgia , Receptor, Cannabinoid, CB2 , Animals , Mice , Cannabidiol/pharmacology , Cannabis/chemistry , Microglia , Neuralgia/drug therapy , Neuroinflammatory Diseases , Oils , Quality of Life , Receptor, Cannabinoid, CB2/drug effects , Receptor, Cannabinoid, CB2/metabolism
8.
Food Res Int ; 162(Pt B): 112083, 2022 12.
Article in English | MEDLINE | ID: mdl-36461332

ABSTRACT

The present research reports the results of a long-term study (70 days) of the dynamics of Staphylococcus aureus artificially inoculated in a Tenebrio molitor rearing chain for human consumption. To this end, a rearing substrate consisting of organic wheat middlings was spiked with S. aureus to obtain three initial contamination levels, namely 1 (low level), 5 (medium level) and 7 (high level) Log colony forming unit per gram. Microbial viable counting coupled with metataxonomic analysis were performed to evaluate: i) the persistence and growth of S. aureus in the rearing substrate; ii) the colonization and growth of S. aureus in the insect larvae; iii) the occurrence and load of S. aureus in the frass (excrement from larvae mixed with substrate residues); iv) the presence of S. aureus enterotoxins in the rearing substrate, frass, and larvae. The results of the present study highlighted that wheat middlings contaminated with S. aureus do not represent a suitable environment for the multiplication of the pathogen, irrespective of the initial contamination level. Of note, frass originated from the larvae reared on contaminated wheat middlings might potentially represent a source of S. aureus, with cell loads depending on the initial contamination level. A complex resident microbiota was revealed by metataxonomic analysis. Interestingly, co-occurrence/co-exclusions analysis did not reveal associations between the target microorganism and the microbiota of wheat middlings, larvae, or frass. Considering safety aspects of larvae, the results overall collected suggested that, under the applied conditions, T. molitor represents an inhospitable or even hostile environment for S. aureus, with this latter showing counts below the detection limit in the larvae at the end of the 70-day rearing trial, irrespective of the initial contamination level. The results also suggested that a combination of bactericidal factors, including unfavorable environmental conditions (such as low aw of wheat middlings and frass), might have established in the rearing chain. Finally, the absence of staphylococcal toxins suggests that, even when S. aureus is present at high contamination levels, it is not able to produce toxins in wheat middlings, larvae, or frass.


Subject(s)
Physiological Phenomena , Tenebrio , Humans , Animals , Staphylococcus aureus , Larva , Enterotoxins
9.
J Int Med Res ; 50(11): 3000605221133689, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36420737

ABSTRACT

In recent years, the more widespread availability of biological drugs with specific mechanisms of action has led to significant breakthroughs in the management of severe asthma. Over time, numerous randomised clinical trials have been conducted to evaluate the efficacy and safety of these biologics and define the eligibility criteria of patients suitable for various therapeutic options. These studies were conducted under controlled conditions not always applicable to real life. For this and other reasons, real-world evidence and pragmatic studies are required to provide useful information on the effectiveness of biological drugs and their safety, even in the long term. Because differences in outcomes have sometimes emerged between clinical trials and real-life studies, it is important to clarify the causes of these discrepancies and define the significance of the results of studies conducted in the course of daily clinical practice. Thus, a scientific debate is ongoing, and no consensus has been reached. The purpose of this narrative review is to analyse the differences between randomised trials and real-world evidence studies, focusing on their roles in guiding clinicians among different therapeutic options and understanding the reasons for the large discrepancies often found in the results obtained.


Subject(s)
Asthma , Biological Products , Humans , Biological Products/therapeutic use , Asthma/drug therapy
10.
Int J Mol Sci ; 23(15)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35897773

ABSTRACT

In the last few years, several efforts have been made to identify original strategies against glioblastoma multiforme (GBM): this requires a more detailed investigation of the molecular mechanism of GBM so that novel targets can be identified for new possible therapeutic agents. Here, using a combined biochemical and proteomic approach, we evaluated the ability of a blood-brain barrier-permeable 2,3-benzodiazepin-4-one, called 1g, to interfere with the activity and the expression of brain glycogen phosphorylase (PYGB) on U87MG cell line in parallel with the capability of this compound to inhibit the cell growth and cycle. Thus, our results highlighted PYGB as a potential therapeutic target in GBM prompting 1g as a capable anticancer drug thanks to its ability to negatively modulate the uptake and metabolism of glucose, the so-called "Warburg effect", whose increase is considered a common feature of cancer cells in respect of their normal counterparts.


Subject(s)
Brain Neoplasms , Glioblastoma , Brain/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cell Line, Tumor , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glycogen Phosphorylase/metabolism , Humans , Proteomics
11.
Food Res Int ; 157: 111269, 2022 07.
Article in English | MEDLINE | ID: mdl-35761581

ABSTRACT

The edible insect food chain represents a relatively novel food-producing system; hence, associated biological risks still need to be exhaustively evaluated. In the present study, the dynamics of Escherichia coli during the whole living period of Tenebrio molitor larvae (from eggs to pupae) were studied. To this end, a rearing substrate consisting of organic wheat middlings was spiked with E. coli cells at two initial contamination levels: 1 log cfu g-1 (low) and 6 log cfu g-1 (high). Microbial viability counting coupled with metataxonomic analyses was used to assess i) the persistence and growth of E. coli in the rearing substrate (wheat middlings); ii) the colonization and growth of E. coli in the insect larvae; and iii) the occurrence and load of E. coli in the frass (excrement from larvae mixed with substrate residues). The results highlighted a very limited persistence of the pathogen in all analyzed samples. In more detail, the results suggested that when E. coli was present at very low levels in the eggs of the insect, the pathogen was not able to reach concerning levels in the larvae. Moreover, when E. coli was present in the wheat middlings used for rearing, the environmental conditions of the substrate (low aw values) were not favorable for its survival and multiplication, irrespective of the presence of the larvae and their frass. Surprisingly, under the conditions applied in the present study, the larvae fed wheat middlings contaminated with E. coli seemed to be inhospitable or even hostile environments for microbial survival or multiplication. To explain the low levels of E. coli cells in the larvae reared in the present study, many factors can be considered, including the immune response of the host, microbial composition and interactions established in the gut of larvae, and insect species. Of note, part of the major fraction of the microbiota of larvae at the end of rearing was represented by Lactococcus, thus suggesting a possible effect of this lactic acid bacterium on E. coli decay. Further research is needed to better clarify the interactions between E. coli and the insect gut, as well as the interactions established among the target microorganism and those naturally harbored by the insect gut.


Subject(s)
Edible Insects , Tenebrio , Animals , Escherichia coli , Humans , Larva/microbiology , Pupa , Tenebrio/microbiology
12.
Pathogens ; 11(4)2022 Apr 03.
Article in English | MEDLINE | ID: mdl-35456110

ABSTRACT

Coronavirus disease 2019 (COVID-19) is the most dramatic pandemic of the new millennium; to counteract it, specific vaccines have been launched in record time under emergency use authorization or conditional marketing authorization by virtue of a favorable risk/benefit balance. Among the various technological platforms, there is that exploiting a nucleoside-modified messenger RNA (modRNA), such as Comirnaty®, and that which is adenoviral vector-based. In the ongoing pharmacovigilance, the product information of the latter has been updated about the risk of thrombotic thrombocytopenia, venous thromboembolism without thrombocytopenia and immune thrombocytopenia without thrombosis. However, from an in-depth literature review, the same adverse events can rarely occur with modRNA vaccines too. In support of this, we here report a three-case series of thrombotic deaths in patients over 50 with comorbidities temporally after Comirnaty®, investigated by means of post-mortem histopathology and immunohistochemistry. In two out of three cases, the cause of death is traced back to pulmonary microthromboses rich in activated platelets, quite similar morphologically to those described in patients who died from severe COVID-19. Even if remote in the face of millions of administered doses, clinicians should be aware of the possible thrombotic risk also after Comirnaty®, in order to avoid a misdiagnosis with potentially lethal consequences. Since COVID-19 vaccines are inoculated in subjects to be protected, maximum attention must be paid to their safety, and prophylactic measures to increase it are always welcome. In light of the evidence, the product information of modRNA COVID-19 vaccines should be updated about the thrombotic risk, as happened for adenoviral vector-based vaccines.

13.
R Soc Open Sci ; 9(4): 211485, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35425628

ABSTRACT

We characterize poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) scaffolds for tissue repair and regeneration, manufactured by three-dimensional fused filament fabrication (FFF). PHBH belongs to the class of polyhydroxyalkanoates with interesting biodegradable and biocompatible capabilities, especially attractive for tissue engineering. Equally, FFF stands as a promising manufacturing technology for the production of custom-designed scaffolds. We address thermal, rheological and cytotoxicity properties of PHBH, placing special emphasis on the mechanical response of the printed material in a wide deformation range. Indeed, effective mechanical properties are assessed in both the linear and nonlinear regime. To warrant uniqueness of the material parameters, these are measured directly through digital image correlation, both in tension and compression, while experimental data fitting of finite-element analyses is only adopted for the determination of the second invariant coefficient in the nonlinear regime. Mechanical data are clearly porosity dependent, and they are given for both the cubic and the honeycomb infill pattern. Local strain spikes due to the presence of defects are observed and measured: those falling in the range 70-100% lead to macro-crack development and, ultimately, to failure. Results suggest the significant potential attached to FFF printing of PHBH for customizable medical devices which are biocompatible and mechanically resilient.

14.
Phytother Res ; 36(2): 914-927, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35107862

ABSTRACT

In this study, extracts from non-psychoactive Cannabis sativa L. varieties were characterized by means of ultra high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS) and their antiproliferative activity was assessed in vitro. The human chronic myelogenous leukaemia cell line K562 was chosen to investigate the mechanism of cell death. The effect on the cell cycle and cell death was analysed by flow cytometry. Proteins related to apoptosis were studied by western blotting. Mechanical properties of cells were assessed using the Micropipette Aspiration Technique (MAT). The results indicated that the cannabidiol (CBD)-rich extract inhibited cell proliferation of K562 cell line in a dose-dependent manner and induced apoptosis via caspase 3 and 7 activation. A significant decrease in the mitochondrial membrane potential was detected, together with the release of cytochrome c into the cytosol. The main apoptotic markers were not involved in the mechanism of cell death. The extract was also able to modify the mechanical properties of cells. Thus, this hemp extract and its pure component CBD deserve further investigation for a possible application against myeloproliferative diseases, also in association with other anticancer drugs.


Subject(s)
Cannabidiol , Cannabinoids , Cannabis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Apoptosis , Cannabidiol/chemistry , Cannabidiol/pharmacology , Cannabinoids/pharmacology , Cannabis/chemistry , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Plant Extracts/chemistry , Plant Extracts/pharmacology
15.
Front Vet Sci ; 8: 695375, 2021.
Article in English | MEDLINE | ID: mdl-34651032

ABSTRACT

Objective: Hepatic encephalopathy (HE) is a neuropsychiatric syndrome caused by liver failure and by an impaired neurotransmission and neurological function caused by hyperammonemia (HA). HE, in turn, decreases the phosphorylation of protein kinase C epsilon (PKCε), contributing to the impairment of neuronal functions. Dehydroepiandrosterone (DHEA) exerts a neuroprotective effect by increasing the GABAergic tone through GABAA receptor stimulation. Therefore, we investigated the protective effect of DHEA in an animal model of HE, and the possible modulation of PKCε expression in different brain area. Methods: Fulminant hepatic failure was induced in 18 male, Sprague-Dawley rats by i.p. administration of 3 g/kg D-galactosamine, and after 30 min, a group of animals received a subcutaneous injection of 25 mg/kg (DHEA) repeated twice a day (3 days). Exploratory behavior and general activity were evaluated 24 h and 48 h after the treatments by the open field test. Then, brain cortex and cerebellum were used for immunoblotting analysis of PKCε level. Results: DHEA administration showed a significant improvement of locomotor activity both 24 and 48 h after D-galactosamine treatment (**** p < 0.0001) but did not ameliorate liver parenchymal degeneration. Western blot analysis revealed a reduced immunoreactivity of PKCε (* p < 0.05) following D-galactosamine treatment in rat cortex and cerebellum. After the addition of DHEA, PKCε increased in the cortex in comparison with the D-galactosamine-treated (*** p < 0.001) and control group (* p < 0.05), but decreased in the cerebellum (* p < 0.05) with respect to the control group. PKCε decreased after treatment with NH4Cl alone and in combination with DHEA in both cerebellum and cortex (**** p < 0.0001). MTS assay demonstrated the synergistic neurotoxic action of NH4Cl and glutamate pretreatment in cerebellum and cortex along with an increased cell survival after DHEA pretreatment, which was significant only in the cerebellum (* p < 0.05). Conclusion: An association between the DHEA-mediated increase of PKCε expression and the improvement of comatose symptoms was observed. PKCε activation and expression in the brain could inhibit GABA-ergic tone counteracting HE symptoms. In addition, DHEA seemed to ameliorate the symptoms of HE and to increase the expression of PKCε in cortex and cerebellum.

16.
J Thromb Thrombolysis ; 52(4): 1043-1046, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33844151

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is a complex disease with many clinicopathological aspects, including abnormal immunothrombosis, and the full comprehension of its pathogenetic mechanisms is urgently required. METHODS/RESULTS: By means of a multidisciplinary approach, we here report a catastrophic COVID-19 in a 44-year-old Philippine male patient, discovered lupus anticoagulant (LAC)-positive shortly before death, occurred 8 days after hospitalization in a clinical scenario refractory to standard high acuity care recalling Asherson's syndrome (catastrophic antiphospholipid syndrome). CONCLUSION: A parallelism between this severe form of COVID-19 and Asherson's syndrome can be so drawn. Both the diseases in fact exhibit hypercytokinemia, thrombotic microangiopathy, disseminated intravascular coagulation and multiple organ failure, they show a relationship with viral infections, and they are burdened by a high mortality rate. A genetic predisposition to develop these two overlapping conditions may be supposed.


Subject(s)
Antiphospholipid Syndrome , COVID-19 , Lupus Coagulation Inhibitor/blood , Thromboinflammation , Adult , Fatal Outcome , Humans , Male
17.
J Med Virol ; 93(7): 4054-4057, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33675239

ABSTRACT

On March 11, 2020, the World Health Organization declared coronavirus disease 2019 (COVID-19) a pandemic; from that date, the vaccine race has begun, and many technology platforms to develop a specific and effective COVID-19 vaccine have been launched in several clinical trials (protein subunit, RNA-based, DNA-based, replicating viral vector, nonreplicating viral vector, inactivated virus, live attenuated virus, and virus-like particle). Among the next-generation strategies, nucleoside-modified messenger RNA vaccines appear the most attractive, not only to counteract emerging pathogens but also for the possible applications in regenerative medicine and cancer therapy. However, exactly as all innovative drugs, they deserve careful pharmacovigilance in the short and long term.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Vaccines, Synthetic , 2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Humans , Hypersensitivity/etiology , Liposomes/adverse effects , Nanoparticles/adverse effects , Nucleosides , Pandemics/prevention & control , Pharmacovigilance , Polyethylene Glycols/adverse effects , RNA, Messenger/chemistry , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology , mRNA Vaccines
18.
Ann Biomed Eng ; 49(9): 2243-2259, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33728867

ABSTRACT

Mechanobiology has nowadays acquired the status of a topic of fundamental importance in a degree in Biological Sciences. It is inherently a multidisciplinary topic where biology, physics and engineering competences are required. A course in mechanobiology should include lab experiences where students can appreciate how mechanical stimuli from outside affect living cell behaviour. Here we describe all the steps to build a cell stretcher inside an on-stage cell incubator. This device allows exposing living cells to a periodic mechanical stimulus similar to what happens in physiological conditions such as, for example, in the vascular system or in the lungs. The reaction of the cells to the periodic mechanical stretching represents a prototype of a mechanobiological signal integrated by living cells. We also provide the theoretical and experimental aspects related to the calibration of the stretcher apparatus at a level accessible to researchers not used to dealing with topics like continuum mechanics and analysis of deformations. We tested our device by stretching cells of two different lines, U87-MG and Balb-3T3 cells, and we analysed and discussed the effect of the periodic stimulus on both cell reorientation and migration. We also discuss the basic aspects related to the quantitative analysis of the reorientation process and of cell migration. We think that the device we propose can be easily reproduced at low-cost within a project-oriented course in the fields of biology, biotechnology and medical engineering.


Subject(s)
Biophysics/methods , Stress, Mechanical , Animals , Biomechanical Phenomena , Cell Line , Cell Movement , Humans , Mice , Time-Lapse Imaging
19.
Prostaglandins Other Lipid Mediat ; 154: 106540, 2021 06.
Article in English | MEDLINE | ID: mdl-33636368

ABSTRACT

Coronavirus Disease 2019 (COVID-19) is upsetting the world and innovative therapeutic solutions are needed in an attempt to counter this new pandemic. Great hope lies in vaccines, but drugs to cure the infected patient are just as necessary. In the most severe forms of the disease, a cytokine storm with neuroinflammation occurs, putting the patient's life at serious risk, with sometimes long-lasting sequelae. Palmitoylethanolamide (PEA) is known to possess anti-inflammatory and neuroprotective properties, which make it an ideal candidate to be assumed in the earliest stage of the disease. Here, we provide a mini-review on the topic, pointing out phospholipids consumption in COVID-19, the possible development of an antiphospholipid syndrome secondary to SARS-CoV-2 infection, and reporting our preliminary single-case experience concerning to a 45-year-old COVID-19 female patient recently treated with success by micronized / ultramicronized PEA.


Subject(s)
Amides/administration & dosage , Anti-Inflammatory Agents/administration & dosage , Antiphospholipid Syndrome/drug therapy , COVID-19 Drug Treatment , Ethanolamines/administration & dosage , Neuroprotective Agents/administration & dosage , Palmitic Acids/administration & dosage , SARS-CoV-2/metabolism , Antiphospholipid Syndrome/etiology , Antiphospholipid Syndrome/metabolism , Antiphospholipid Syndrome/pathology , COVID-19/complications , COVID-19/metabolism , COVID-19/pathology , Female , Humans , Middle Aged
20.
Genes (Basel) ; 12(2)2021 02 01.
Article in English | MEDLINE | ID: mdl-33535615

ABSTRACT

Hermetia illucens larvae are among the most promising insects for use as food or feed ingredients due to their ability to convert organic waste into biomass with high-quality proteins. In this novel food or feed source, the absence of antibiotic-resistant bacteria and their antibiotic resistance (AR) genes, which could be horizontally transferred to animal or human pathogens through the food chain, must be guaranteed. This study was conducted to enhance the extremely scarce knowledge on the occurrence of AR genes conferring resistance to the main classes of antibiotics in a rearing chain of H. illucens larvae and how they were affected by rearing substrates based on coffee silverskin supplemented with increasing percentages of Schizochytrium limacinum or Isochrysis galbana microalgae. Overall, the PCR and nested PCR assays showed a high prevalence of tetracycline resistance genes. No significant effect of rearing substrates on the distribution of the AR genes in the H. illucens larvae was observed. In contrast, the frass samples were characterized by a significant accumulation of AR genes, and this phenomenon was particularly evident for the samples collected after rearing H. illucens larvae on substrates supplemented with high percentages (>20%) of I. galbana. The latter finding indicates potential safety concerns in reusing frass in agriculture.


Subject(s)
Diptera/genetics , Drug Resistance, Microbial/genetics , Gastrointestinal Microbiome/drug effects , Microalgae/chemistry , Animal Feed , Animals , Anti-Bacterial Agents/pharmacology , Coffee/chemistry , Diptera/drug effects , Drug Resistance, Microbial/drug effects , Haptophyta/chemistry , Humans , Larva/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...