Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
ACS Eng Au ; 4(2): 204-212, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38646518

ABSTRACT

A rise in the disinfection of spaces occurred as a result of the COVID-19 pandemic as well as an increase in people wearing facial coverings. Hydrogen peroxide was among the recommended disinfectants for use against the virus. Previous studies have investigated the emissions of hydrogen peroxide associated with the disinfection of spaces and masks; however, those studies did not focus on the emitted byproducts from these processes. Here, we simulate the disinfection of an indoor space with H2O2 while a person wearing a face mask is present in the space by using an environmental chamber with a thermal manikin wearing a face mask over its breathing zone. We injected hydrogen peroxide to disinfect the space and utilized a chemical ionization mass spectrometer (CIMS) to measure the primary disinfectant (H2O2) and a Vocus proton transfer reaction time-of-flight mass spectrometer (Vocus PTR-ToF-MS) to measure the byproducts from disinfection, comparing concentrations inside the chamber and behind the mask. Concentrations of the primary disinfectant and the byproducts inside the chamber and behind the mask remained elevated above background levels for 2-4 h after disinfection, indicating the possibility of extended exposure, especially when continuing to wear the mask. Overall, our results point toward the time-dependent impact of masks on concentrations of disinfectants and their byproducts and a need for regular mask change following exposure to high concentrations of chemical compounds.

2.
Environ Sci Technol ; 57(16): 6589-6598, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37061949

ABSTRACT

Mask wearing and bleach disinfectants became commonplace during the COVID-19 pandemic. Bleach generates toxic species including hypochlorous acid (HOCl), chlorine (Cl2), and chloramines. Their reaction with organic species can generate additional toxic compounds. To understand interactions between masks and bleach disinfection, bleach was injected into a ventilated chamber containing a manikin with a breathing system and wearing a surgical or KN95 mask. Concentrations inside the chamber and behind the mask were measured by a chemical ionization mass spectrometer (CIMS) and a Vocus proton transfer reaction mass spectrometer (Vocus PTRMS). HOCl, Cl2, and chloramines were observed during disinfection and concentrations inside the chamber are 2-20 times greater than those behind the mask, driven by losses to the mask surface. After bleach injection, many species decay more slowly behind the mask by a factor of 0.5-0.7 as they desorb or form on the mask. Mass transfer modeling confirms the transition of the mask from a sink during disinfection to a source persisting >4 h after disinfection. Humidifying the mask increases reactive formation of chloramines, likely related to uptake of ammonia and HOCl. These experiments indicate that masks are a source of chemical exposure after cleaning events occur.


Subject(s)
COVID-19 , Disinfectants , Humans , Hypochlorous Acid , Chloramines/chemistry , N95 Respirators , Pandemics , Disinfectants/chemistry , Disinfectants/toxicity , Disinfection , Chlorine/chemistry
3.
J Expo Sci Environ Epidemiol ; 33(3): 339-346, 2023 05.
Article in English | MEDLINE | ID: mdl-36424424

ABSTRACT

BACKGROUND: Several studies suggest that far-field transmission (>6 ft) explains a significant number of COVID-19 superspreading outbreaks. OBJECTIVE: Therefore, quantifying the ratio of near- and far-field exposure to emissions from a source is key to better understanding human-to-human airborne infectious disease transmission and associated risks. METHODS: In this study, we used an environmentally-controlled chamber to measure volatile organic compounds (VOCs) released from a healthy participant who consumed breath mints, which contained unique tracer compounds. Tracer measurements were made at 0.76 m (2.5 ft), 1.52 m (5 ft), 2.28 m (7.5 ft) from the participant, as well as in the exhaust plenum of the chamber. RESULTS: We observed that 0.76 m (2.5 ft) trials had ~36-44% higher concentrations than other distances during the first 20 minutes of experiments, highlighting the importance of the near-field exposure relative to the far-field before virus-laden respiratory aerosol plumes are continuously mixed into the far-field. However, for the conditions studied, the concentrations of human-sourced tracers after 20 minutes and approaching the end of the 60-minute trials at 0.76 m, 1.52 m, and 2.28 m were only ~18%, ~11%, and ~7.5% higher than volume-averaged concentrations, respectively. SIGNIFICANCE: This study suggests that for rooms with similar airflow parameters disease transmission risk is dominated by near-field exposures for shorter event durations (e.g., initial 20-25-minutes of event) whereas far-field exposures are critical throughout the entire event and are increasingly more important for longer event durations. IMPACT STATEMENT: We offer a novel methodology for studying the fate and transport of airborne bioaerosols in indoor spaces using VOCs as unique proxies for bioaerosols. We provide evidence that real-time measurement of VOCs can be applied in settings with human subjects to estimate the concentration of bioaerosol at different distances from the emitter. We also improve upon the conventional assumption that a well-mixed room exhibits instantaneous and perfect mixing by addressing spatial distances and mixing over time. We quantitatively assessed the exposure levels to breath tracers at alternate distances and provided more insights into the changes on "near-field to far-field" ratios over time. This method can be used in future to estimate the benefits of alternate environmental conditions and occupant behaviors.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Disease Transmission, Infectious , Air Pollutants/analysis , Breath Tests , Volatile Organic Compounds , Aerosols
4.
Res Sq ; 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35291299

ABSTRACT

Several studies suggest that far-field transmission (> 6 ft) explains the significant number of COVID-19 superspreading outbreaks. Therefore, quantitative evaluation of near- and far-field exposure to emissions from a source is key to better understanding human-to-human airborne infectious disease transmission and associated risks. In this study, we used an environmentally-controlled chamber to measure volatile organic compounds (VOCs) released from a healthy participant who consumed breath mints, which contained unique tracer compounds. Tracer measurements were made at 2.5 ft, 5 ft, 7.5 ft from the participant, as well as in the exhaust plenum of the chamber. We observed that 2.5 ft trials had substantially (~36-44%) higher concentrations than other distances during the first 20 minutes of experiments, highlighting the importance of the near-field relative to the far-field before virus-laden respiratory aerosol plumes are continuously mixed into the far-field. However, for the conditions studied, the concentrations of human-sourced tracers after 20 minutes and approaching the end of the 60-minute trials at 2.5 ft, 5 ft, and 7.5 ft were only ~18%, ~11%, and ~7.5% higher than volume-averaged concentrations, respectively. Our findings highlight the importance of far-field transmission of airborne pathogens including SARS-CoV-2, which need to be considered in public health decision making.

5.
Atmos Environ X ; 13: 100152, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35098105

ABSTRACT

Ventilation is of primary concern for maintaining healthy indoor air quality and reducing the spread of airborne infectious disease, including COVID-19. In addition to building-level guidelines, increased attention is being placed on room-level ventilation. However, for many universities and schools, ventilation data on a room-by-room basis are not available for classrooms and other key spaces. We present an overview of approaches for measuring ventilation along with their advantages and disadvantages. We also present data from recent case studies for a variety of institutions across the United States, with various building ages, types, locations, and climates, highlighting their commonalities and differences, and examples of the use of this data to support decision making.

6.
Environ Sci Technol ; 56(3): 1594-1604, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35061386

ABSTRACT

Water uptake by thin organic films and organic particles on glass substrates at 80% relative humidity was investigated using atomic force microscopy-infrared (AFM-IR) spectroscopy. Glass surfaces exposed to kitchen cooking activities show a wide variability of coverages from organic particles and organic thin films. Water uptake, as measured by changes in the volume of the films and particles, was also quite variable. A comparison of glass surfaces exposed to kitchen activities to model systems shows that they can be largely represented by oxidized oleic acid and carboxylate groups on long and medium hydrocarbon chains (i.e., fatty acids). Overall, we demonstrate that organic particles and thin films that cover glass surfaces can take up water under indoor-relevant conditions but that the water content is not uniform. The spatial heterogeneity of the changes in these aged glass surfaces under dry (5%) and wet (80%) conditions is quite marked, highlighting the need for studies at the nano- and microscale.


Subject(s)
Cooking , Water , Glass , Microscopy, Atomic Force/methods , Spectrophotometry, Infrared , Water/chemistry
7.
Risk Anal ; 42(9): 2075-2088, 2022 09.
Article in English | MEDLINE | ID: mdl-34713463

ABSTRACT

Aerosol transmission has played a significant role in the transmission of COVID-19 disease worldwide. We developed a COVID-19 aerosol transmission risk estimation model to better understand how key parameters associated with indoor spaces and infector emissions affect inhaled deposited dose of aerosol particles that convey the SARS-CoV-2 virus. The model calculates the concentration of size-resolved, virus-laden aerosol particles in well-mixed indoor air challenged by emissions from an index case(s). The model uses a mechanistic approach, accounting for particle emission dynamics, particle deposition to indoor surfaces, ventilation rate, and single-zone filtration. The novelty of this model relates to the concept of "inhaled & deposited dose" in the respiratory system of receptors linked to a dose-response curve for human coronavirus HCoV-229E. We estimated the volume of inhaled & deposited dose of particles in the 0.5-4 µm range expressed in picoliters (pL) in a well-documented COVID-19 outbreak in restaurant X in Guangzhou China. We anchored the attack rate with the dose-response curve of HCoV-229E which provides a preliminary estimate of the average SARS-CoV-2 dose per person, expressed in plaque forming units (PFUs). For a reasonable emission scenario, we estimate approximately three PFU per pL deposited, yielding roughly 10 PFUs deposited in the respiratory system of those infected in restaurant X. To explore the model's utility, we tested it with four COVID-19 outbreaks. The risk estimates from the model fit reasonably well with the reported number of confirmed cases given available metadata from the outbreaks and uncertainties associated with model assumptions.


Subject(s)
COVID-19 , China , Humans , Respiratory Aerosols and Droplets , SARS-CoV-2
9.
Environ Sci Process Impacts ; 22(8): 1698-1709, 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32661531

ABSTRACT

Indoor surfaces are extremely diverse and their interactions with airborne compounds and aerosols influence the lifetime and reactivity of indoor emissions. Direct measurements of the physical and chemical state of these surfaces provide insights into the underlying physical and chemical processes involving surface adsorption, surface partitioning and particle deposition. Window glass, a ubiquitous indoor surface, was placed vertically during indoor activities throughout the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign and then analyzed to measure changes in surface morphology and surface composition. Atomic force microscopy-infrared (AFM-IR) spectroscopic analyses reveal that deposition of submicron particles from cooking events is a contributor to modifying the chemical and physical state of glass surfaces. These results demonstrate that the deposition of glass surfaces can be an important sink for organic rich particles material indoors. These findings also show that particle deposition contributes enough organic matter from a single day of exposure equivalent to a uniform film up to two nanometers in thickness, and that the chemical distinctness of different indoor activities is reflective of the chemical and morphological changes seen in these indoor surfaces. Comparison of the experimental results to physical deposition models shows variable agreement, suggesting that processes not captured in physical deposition models may play a role in the sticking of particles on indoor surfaces.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Cooking , Adsorption , Aerosols , Particle Size
10.
Article in English | MEDLINE | ID: mdl-26259926

ABSTRACT

Trichloroethylene (TCE) in groundwater has the potential to volatilize through soil into indoor air where it can be inhaled. The purpose of this study was to determine whether individuals living above TCE-contaminated groundwater are exposed to TCE through vapor intrusion. We examined associations between TCE concentrations in various environmental media and TCE concentrations in residents. For this assessment, indoor air, outdoor air, soil gas, and tap water samples were collected in and around 36 randomly selected homes; blood samples were collected from 63 residents of these homes. Additionally, a completed exposure survey was collected from each participant. Environmental and blood samples were analyzed for TCE. Mixed model multiple linear regression analyses were performed to determine associations between TCE in residents' blood and TCE in indoor air, outdoor air, and soil gas. Blood TCE concentrations were above the limit of quantitation (LOQ; ≥ 0.012 µg L(-1)) in 17.5% of the blood samples. Of the 36 homes, 54.3%, 47.2%, and >84% had detectable concentrations of TCE in indoor air, outdoor air, and soil gas, respectively. Both indoor air and soil gas concentrations were statistically significantly positively associated with participants' blood concentrations (P = 0.0002 and P = 0.04, respectively). Geometric mean blood concentrations of residents from homes with indoor air concentrations of >1.6 µg m(-3) were approximately 50 times higher than geometric mean blood TCE concentrations in participants from homes with no detectable TCE in indoor air (P < .0001; 95% CI 10.4-236.4). This study confirms the occurrence of vapor intrusion and demonstrates the magnitude of exposure from vapor intrusion of TCE in a residential setting.


Subject(s)
Environmental Exposure/analysis , Trichloroethylene/analysis , Adult , Air Pollution, Indoor/analysis , Family Characteristics , Female , Gases/chemistry , Groundwater/chemistry , Humans , Limit of Detection , Male , Soil/chemistry , Trichloroethylene/blood , Volatilization , Water/chemistry
11.
J Air Waste Manag Assoc ; 65(8): 937-47, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26211635

ABSTRACT

Nitrogen oxides (NOx) emitted from combustion processes have elevated concentrations in large urban areas. They cause a range of adverse health effects, acid rain, and are precursors to formation of other atmospheric pollutants, such as ozone, peroxyacetyl nitrate, and inorganic aerosols. Photocatalytic materials containing a semi-conductor that can be activated by sunlight, such as titanium dioxide, have been studied for their ability to remove NOx. The study presented herein aims to elucidate the environmental parameters that most influence the NOx removal efficiency of photocatalytic coatings in hot and humid climate conditions. Concrete samples coated with a commercially available photocatalytic coating (a stucco) and an uncoated sample have been tested in a reactor simulating reasonable summertime outdoor sunlight, relative humidity and temperature conditions in southeast Texas. Two-level full factorial experiments were completed on each sample for five parameters. It was found that contact time, relative humidity and temperature significantly influenced both NO and NO2removal. Elevated concentrations of organic pollutants reduced NO removal by the coating. Ultra-violet light intensity did not significantly influence removal of NO or NO2, however, ultra-violet light intensity was involved in a two-factor interaction that significantly influenced removal of both NO and NO2.


Subject(s)
Environment , Nitrogen Oxides/chemistry , Air Pollutants/chemistry , Alkenes/chemistry , Catalysis , Humidity , Light , Photolysis , Propane/chemistry , Temperature , Time Factors
12.
Indoor Air ; 25(3): 231-4, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25912980
13.
Environ Sci Technol ; 49(7): 4398-406, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25748309

ABSTRACT

We develop an ozone transport and reaction model to determine reaction probabilities and assess the importance of physical properties such as porosity, pore diameter, and material thickness on reactive uptake of ozone to five materials. The one-dimensional model accounts for molecular diffusion from bulk air to the air-material interface, reaction at the interface, and diffusive transport and reaction through material pore volumes. Material-ozone reaction probabilities that account for internal transport and internal pore area, γ(ipa), are determined by a minimization of residuals between predicted and experimentally derived ozone concentrations. Values of γ(ipa) are generally less than effective reaction probabilities (γ(eff)) determined previously, likely because of the inclusion of diffusion into substrates and reaction with internal surface area (rather than the use of the horizontally projected external material areas). Estimates of γ(ipa) average 1 × 10(-7), 2 × 10(-7), 4 × 10(-5), 2 × 10(-5), and 4 × 10(-7) for two types of cellulose paper, pervious pavement, Portland cement concrete, and an activated carbon cloth, respectively. The transport and reaction model developed here accounts for observed differences in ozone removal to varying thicknesses of the cellulose paper, and estimates a near constant γ(ipa) as material thickness increases from 0.02 to 0.16 cm.


Subject(s)
Models, Theoretical , Ozone/chemistry , Cellulose , Charcoal , Diffusion , Paper , Porosity
14.
Environ Sci Technol ; 48(7): 3682-90, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24568620

ABSTRACT

Models of reactive uptake of ozone in indoor environments generally describe materials through aerial (horizontal) projections of surface area, a potentially limiting assumption for porous materials. We investigated the effect of changing porosity/pore size, material thickness, and chamber fluid mechanic conditions on the reactive uptake of ozone to five materials: two cellulose filter papers, two cementitious materials, and an activated carbon cloth. Results include (1) material porosity and pore size distributions, (2) effective diffusion coefficients for ozone in materials, and (3) material-ozone deposition velocities and reaction probabilities. At small length scales (0.02-0.16 cm) increasing thickness caused increases in estimated reaction probabilities from 1 × 10(-6) to 5 × 10(-6) for one type of filter paper and from 1 × 10(-6) to 1 × 10(-5) for a second type of filter paper, an effect not observed for materials tested at larger thicknesses. For high porosity materials, increasing chamber transport-limited deposition velocities resulted in increases in reaction probabilities by factors of 1.4-2.0. The impact of physical properties and transport effects on values of the Thiele modulus, ranging across all materials from 0.03 to 13, is discussed in terms of the challenges in estimating reaction probabilities to porous materials in scenarios relevant to indoor environments.


Subject(s)
Cellulose/chemistry , Manufactured Materials , Ozone/isolation & purification , Physical Phenomena , Charcoal/chemistry , Construction Materials , Diffusion , Mercury/analysis , Micropore Filters , Models, Theoretical , Paper , Porosity , Rheology
15.
J Occup Environ Hyg ; 10(6): 328-35, 2013.
Article in English | MEDLINE | ID: mdl-23570396

ABSTRACT

In this study, modifications were made to previously applied two-zone models to address important factors that can affect exposures during cleaning tasks. Specifically, we expand on previous applications of the two-zone model by (1) introducing the source in discrete elements (source-cells) as opposed to a complete instantaneous release, (2) placing source cells in both the inner (near person) and outer zones concurrently, (3) treating each source cell as an independent mixture of multiple constituents, and (4) tracking the time-varying liquid concentration and emission rate of each constituent in each source cell. Three experiments were performed in an environmentally controlled chamber with a thermal mannequin and a simplified pure chemical source to simulate emissions from a cleaning product. Gas phase concentration measurements were taken in the bulk air and in the breathing zone of the mannequin to evaluate the model. The mean ratio of the integrated concentration in the mannequin's breathing zone to the concentration in the outer zone was 4.3 (standard deviation, σ = 1.6). The mean ratio of measured concentration in the breathing zone to predicted concentrations in the inner zone was 0.81 (σ = 0.16). Intake fractions ranged from 1.9 × 10(-3) to 2.7 × 10(-3). Model results reasonably predict those of previous exposure monitoring studies and indicate the inadequacy of well-mixed single-zone model applications for some but not all cleaning events.


Subject(s)
Detergents/analysis , Inhalation Exposure/analysis , Occupational Exposure/analysis , Volatile Organic Compounds/analysis , Air Movements , Detergents/chemistry , Manikins , Models, Theoretical , Ventilation , Volatile Organic Compounds/chemistry
16.
J Air Waste Manag Assoc ; 62(9): 1075-84, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23019821

ABSTRACT

UNLABELLED: p-Dichlorobenzene (p-DCB) and naphthalene are classified as hazardous air pollutants and rank highly among chronic chemical hazards in US. residences. Sources of p-DCB and naphthalene include moth repellents and deodorizers typically used in closets, garment bags, and toilet bowls. Nearly pure concentrations of p-DCB and naphthalene are found in these products. p-DCB and naphthalene mass emission rates were determined for four different products placed in well-ventilated laboratory chambers as well as closets in a test house and in a garment bag. Concentrations were measured in bedrooms adjacent to closets where products were used. Emission rates varied considerably between products that contain p-DCB, primarily due to product packaging, and were generally suppressed when the product was used in closed closet or garments bags relative to products placed in well-ventilated chambers. This reduction appears to be due to lower air speeds in closets and garment bags as opposed to chemical accumulation. Variations in air temperature within typical ranges observed in homes can significantly influence emission rates of p-DCB and naphthalene. Concentrations of p-DCB and naphthalene in bedrooms adjacent to closets where moth repellents are used can exceed or approach odor thresholds. For this study, the concentrations exceeded or were within the upper few percentiles of those previously reported in residential indoor air. Based on a comparison of whole-house emission rates derived in a previous study, it appears that somewhere between 2% and 12% of homes in that study had active sources of p-DCB and between 5% and 15% had active sources of naphthalene. IMPLICATIONS: Inhalation of p-DCB and naphthalene has been linked to several health effects. Several off-the-shelf consumer products are nearly pure p-DCB or naphthalene, thus leading to potential for high emission rates and gas-phase concentrations in indoor environments where such products are used. Knowledge of p-DCB and naphthalene emission rates and variability in emissions with environmental conditions should provide for improvements in predictions of indoor concentrations of these compounds, which are in turn needed to complete exposure and inhalation risk assessments.


Subject(s)
Air Pollutants/analysis , Chlorobenzenes/analysis , Household Products/analysis , Naphthalenes/analysis
19.
Water Environ Res ; 83(3): 265-73, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21466074

ABSTRACT

The purpose of the study was to characterize natural ventilation in full-scale gravity collection system components while measuring other parameters related to ventilation. Experiments were completed at four different locations in the wastewater collection systems of Los Angeles County Sanitation Districts, Los Angeles, California, and the King County Wastewater Treatment District, Seattle, Washington. The subject components were concrete gravity pipes ranging in diameter from 0.8 to 2.4 m (33 to 96 in.). Air velocity was measured in each pipe using a carbon-monoxide pulse tracer method. Air velocity was measured entering or exiting the components at vents using a standpipe and hotwire anemometer arrangement. Ambient wind speed, temperature, and relative humidity; headspace temperature and relative humidity; and wastewater flow and temperature were measured. The field experiments resulted in a large database of measured ventilation and related parameters characterizing ventilation in full-scale gravity sewers. Measured ventilation rates ranged from 23 to 840 L/s. The experimental data was used to evaluate existing ventilation models. Three models that were based upon empirical extrapolation, computational fluid dynamics, and thermodynamics, respectively, were evaluated based on predictive accuracy compared to the measured data. Strengths and weaknesses in each model were found and these observations were used to propose a concept for an improved ventilation model.


Subject(s)
Air Pollutants/analysis , Ventilation , Waste Disposal, Fluid , Air Movements , Los Angeles , Models, Theoretical , Temperature , Washington , Water Purification
20.
Atmos Environ (1994) ; 45(26): 4329-4343, 2011 Aug.
Article in English | MEDLINE | ID: mdl-32362761

ABSTRACT

Air cleaning techniques have been applied worldwide with the goal of improving indoor air quality. The effectiveness of applying these techniques varies widely, and pollutant removal efficiency is usually determined in controlled laboratory environments which may not be realized in practice. Some air cleaners are largely ineffective, and some produce harmful by-products. To summarize what is known regarding the effectiveness of fan-driven air cleaning technologies, a state-of-the-art review of the scientific literature was undertaken by a multidisciplinary panel of experts from Europe, North America, and Asia with expertise in air cleaning, aerosol science, medicine, chemistry and ventilation. The effects on health were not examined. Over 26,000 articles were identified in major literature databases; 400 were selected as being relevant based on their titles and abstracts by the first two authors, who further reduced the number of articles to 160 based on the full texts. These articles were reviewed by the panel using predefined inclusion criteria during their first meeting. Additions were also made by the panel. Of these, 133 articles were finally selected for detailed review. Each article was assessed independently by two members of the panel and then judged by the entire panel during a consensus meeting. During this process 59 articles were deemed conclusive and their results were used for final reporting at their second meeting. The conclusions are that: (1) None of the reviewed technologies was able to effectively remove all indoor pollutants and many were found to generate undesirable by-products during operation. (2) Particle filtration and sorption of gaseous pollutants were among the most effective air cleaning technologies, but there is insufficient information regarding long-term performance and proper maintenance. (3) The existing data make it difficult to extract information such as Clean Air Delivery Rate (CADR), which represents a common benchmark for comparing the performance of different air cleaning technologies. (4) To compare and select suitable indoor air cleaning devices, a labeling system accounting for characteristics such as CADR, energy consumption, volume, harmful by-products, and life span is necessary. For that purpose, a standard test room and condition should be built and studied. (5) Although there is evidence that some air cleaning technologies improve indoor air quality, further research is needed before any of them can be confidently recommended for use in indoor environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...