Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 6: 6885, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25917569

ABSTRACT

Perineural invasion (PNI) is an indicator of poor survival in multiple cancers. Unfortunately, there is no targeted treatment for PNI since the molecular mechanisms are largely unknown. PNI is an active process, suggesting that cancer cells communicate with nerves. However, nerve-tumour crosstalk is understudied due to the lack of in vivo models to investigate the mechanisms. Here we developed an in vivo model of PNI to characterize this interaction. We show that the neuropeptide galanin (GAL) initiates nerve-tumour crosstalk via activation of its G protein-coupled receptor, GALR2. Our data reveal a novel mechanism by which GAL from nerves stimulates GALR2 on cancer cells to induce NFATC2-mediated transcription of cyclooxygenase-2 and GAL. Prostaglandin E2 promotes cancer invasion, and in a feedback mechanism, GAL released by cancer induces neuritogenesis, facilitating PNI. This study describes a novel in vivo model for PNI and reveals the dynamic interaction between nerve and cancer.


Subject(s)
Galanin/metabolism , Head and Neck Neoplasms/metabolism , Neurites/metabolism , Animals , Cell Line, Tumor , Chick Embryo , Cyclooxygenase 2/metabolism , Disease Progression , Humans , Mice , NFATC Transcription Factors/metabolism , Neoplasm Invasiveness , Random Allocation , Rats , Receptor, Galanin, Type 2/metabolism
2.
Neuroscience ; 252: 35-44, 2013 Nov 12.
Article in English | MEDLINE | ID: mdl-23933306

ABSTRACT

The rostral nucleus of the solitary tract (rNST) receives orosensory information from taste bud cells in the tongue and palate via cranial nerves VII and IX. These nerves enter the brainstem, form the solitary tract (ST) and synapse with neurons in the rNST, which then relay incoming sensory information to other brain areas to process external gustatory stimuli. Factors that direct or regulate the trajectory of the developing ST are largely unknown. We used 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) to identify ST projections originating from cells in the geniculate ganglia of embryonic rats from embryonic day 14 through 18 (E14-E18). After identifying the ST fibers, immunolabeling for and protein expression analysis of the axon guidance molecules neuropilin-1 (Npn-1) and neuropilin-2 (Npn-2) and their binding partners, semaphorin-3A (Sema-3A) and semaphorin-3F (Sema-3F) were performed. The results detail the formation of ST projections into the gustatory brainstem and their relationship to developing rNST neurons. DiI-labeled ST fibers were present in the brainstem as early as E14. Npn-1 was expressed in the ST and in the trigeminal tract at E14, but levels of the protein declined through E18. The expression levels of the binding partner of Npn-1, Sema-3A, increased from E14 to E18. Npn-2 was expressed in the ST and, additionally, in radially oriented, tuft-like structures within the brainstem at E14. Expression levels of Npn-2 also declined through E18, in contrast to the expression levels of its binding partner, Sema-3F, which increased during this time period. For the first time, the time course and particular molecular components involved in development of the ST have been identified. These results indicate that the neuropilin and semaphorin families of axon guidance molecules are potential molecular participants in ST formation.


Subject(s)
Neurogenesis/physiology , Neuropilins/metabolism , Solitary Nucleus/embryology , Solitary Nucleus/metabolism , Animals , Blotting, Western , Fluorescent Antibody Technique , Rats , Rats, Sprague-Dawley , Semaphorins/metabolism
3.
J Neurosci ; 31(21): 7591-603, 2011 May 25.
Article in English | MEDLINE | ID: mdl-21613473

ABSTRACT

Neural competition among multiple inputs can affect the refinement and maintenance of terminal fields in sensory systems. In the rat gustatory system, the chorda tympani, greater superficial petrosal, and glossopharyngeal nerves have distinct but overlapping terminal fields in the first central relay, the nucleus of the solitary tract. This overlap is largest at early postnatal ages followed by a significant refinement and pruning of the fields over a 3 week period, suggesting that competitive mechanisms underlie the pruning. Here, we manipulated the putative competitive interactions among the three nerves by sectioning the greater superficial petrosal and glossopharyngeal nerves at postnatal day 15 (P15), P25, or at adulthood, while leaving the chorda tympani nerve intact. The terminal field of the chorda tympani nerve was assessed 35 d following nerve sections, a period before the sectioned nerves functionally regenerated. Regardless of the age when the nerves were cut, the chorda tympani nerve terminal field expanded to a volume four times larger than sham controls. Terminal field density measurements revealed that the expanded terminal field was similar to P15 control rats. Thus, it appears that the chorda tympani nerve terminal field defaults to its early postnatal field size and shape when the nerves with overlapping fields are cut, and this anatomical plasticity is retained into adulthood. These findings not only demonstrate the dramatic and lifelong plasticity in the central gustatory system, but also suggest that corresponding changes in functional and taste-related behaviors will accompany injury-induced changes in brainstem circuits.


Subject(s)
Chorda Tympani Nerve/physiology , Glossopharyngeal Nerve/physiology , Nerve Endings/physiology , Solitary Nucleus/physiology , Age Factors , Animals , Animals, Newborn , Chorda Tympani Nerve/growth & development , Female , Glossopharyngeal Nerve/growth & development , Male , Nerve Regeneration/physiology , Pregnancy , Rats , Solitary Nucleus/growth & development , Taste/physiology , Taste Buds/growth & development , Taste Buds/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...