Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Crit Care ; 10(5): R135, 2006.
Article in English | MEDLINE | ID: mdl-16981981

ABSTRACT

INTRODUCTION: To obtain strict glucose regulation, an accurate and feasible bedside glucometry method is essential. We evaluated three different types of point-of-care glucometry in seriously ill intensive care unit (ICU) patients. The study was performed as a single-centre, prospective, observational study in a 12-bed medical ICU of a university hospital. METHODS: Patients with an expected ICU stay of more than 48 hours were included. Because the reference laboratory delivers glucose values after approximately 30 to 60 minutes, which is too slow to use in a glucose regulation protocol and for calibration of the subcutaneous continuous glucose monitoring system (CGMS) (CGMS System Gold), we first validated the ICU-based blood gas/glucose analyser ABL715 (part 1 of the study). Subsequently, part 2 was performed: after inserting (and calibrating) the subcutaneous CGMS, heparinised arterial blood samples were drawn from an arterial line every 6 hours and analysed on both the Precision PCx point-of-care meter using test strips and on the blood gas/glucose analyser ABL715. CGMS glucose data were downloaded after 24 to 72 hours. The results of the paired measurements were analysed as a scatter plot by the method of Bland and Altman and were expressed as a correlation coefficient. RESULTS: Part 1: Four hundred and twenty-four blood samples were drawn from 45 critically ill ICU patients. The ICU-based blood gas/glucose analyser ABL715 provided a good estimate of conventional laboratory glucose assessment: the correlation coefficient was 0.95. In the Clarke error grid, 96.8% of the paired measurements were in the clinically acceptable zones A and B. Part 2: One hundred sixty-five paired samples were drawn from 19 ICU patients. The Precision PCx point-of-care meter showed a correlation coefficient of 0.89. Ninety-eight point seven percent of measurements were within zones A and B. The correlation coefficient for the subcutaneous CGMS System Gold was 0.89. One hundred percent of measurements were within zones A and B. CONCLUSION: The ICU-based blood glucose analyser ABL715 is a rapid and accurate alternative for laboratory glucose determination and can serve as a standard for ICU blood glucose measurements. The Precision PCx is a good alternative, but feasibility may be limited because of the blood sample handling. The subcutaneous CGMS System Gold is promising, but real-time glucose level reporting is necessary before it can be of clinical use in the ICU. When implementing a glucose-insulin algorithm in patient care or research, one should realise that the absolute glucose level may differ systematically among various measuring methods, influencing targeted glucose levels.


Subject(s)
Blood Glucose/analysis , Critical Illness/epidemiology , Intensive Care Units , Point-of-Care Systems , Adult , Aged , Feasibility Studies , Humans , Intensive Care Units/standards , Middle Aged , Monitoring, Physiologic/methods , Monitoring, Physiologic/standards , Point-of-Care Systems/standards , Sensitivity and Specificity
3.
Crit Care ; 10(3): 216, 2006.
Article in English | MEDLINE | ID: mdl-16834760

ABSTRACT

Acute hyperglycaemia has been associated with complications, prolonged intensive care unit and hospital stay, and increased mortality. We made an inventory of the prevalence and prognostic value of hyperglycaemia, and of the effects of glucose control in different groups of critically ill patients. The prevalence of hyperglycaemia in critically ill patients, using stringent criteria, approaches 100%. An unambiguous negative correlation between hyperglycaemia and mortality has been described in various groups of critically ill patients. Although the available evidence remains inconsistent, there appears to be a favourable effect of glucose regulation. This effect on morbidity and mortality depends on patient characteristics. To be able to compare results of future studies involving glucose regulation, better definitions of hyperglycaemia (and consequently of normoglycaemia) and patient populations are needed.


Subject(s)
Critical Illness/mortality , Hyperglycemia/blood , Hyperglycemia/mortality , Biomarkers/blood , Blood Glucose/metabolism , Humans
4.
Crit Care ; 10(1): R19, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16469124

ABSTRACT

INTRODUCTION: Tight glycaemic control is an important issue in the management of intensive care unit (ICU) patients. The glycaemic goals described by Van Den Berghe and colleagues in their landmark study of intensive insulin therapy appear difficult to achieve in a real life ICU setting. Most clinicians and nurses are concerned about a potentially increased frequency of severe hypoglycaemic episodes with more stringent glycaemic control. One of the steps we took before we implemented a glucose regulation protocol was to review published trials employing insulin/glucose algorithms in critically ill patients. METHODS: We conducted a search of the PubMed, Embase and Cochrane databases using the following terms: 'glucose', 'insulin', 'protocol', 'algorithm', 'nomogram', 'scheme', 'critically ill' and 'intensive care'. Our search was limited to clinical trials conducted in humans. The aim of the papers selected was required to be glycaemic control in critically ill patients; the blood glucose target was required to be 10 mmol/l or under (or use of a protocol that resulted in a mean blood glucose = 10 mmol/l). The studies were categorized according to patient type, desired range of blood glucose values, method of insulin administration, frequency of blood glucose control, time taken to achieve the desired range for glucose, proportion of patients with glucose in the desired range, mean blood glucose and frequency of hypoglycaemic episodes. RESULTS: A total of twenty-four reports satisfied our inclusion criteria. Most recent studies (nine) were conducted in an ICU; nine others were conducted in a perioperative setting and six were conducted in patients with acute myocardial infarction or stroke. Studies conducted before 2001 did not include normoglycaemia among their aims, which changed after publication of the study by Van Den Berghe and coworkers in 2001; glycaemic goals became tighter, with a target range between 4 and 8 mmol/l in most studies. CONCLUSION: Studies using a dynamic scale protocol combining a tight glucose target and the last two blood glucose values to determine the insulin infusion rate yielded the best results in terms of glycaemic control and reported low frequencies of hypoglycaemic episodes.


Subject(s)
Algorithms , Blood Glucose/metabolism , Critical Illness , Hypoglycemia/blood , Blood Glucose/drug effects , Critical Illness/epidemiology , Feasibility Studies , Humans , Hypoglycemia/drug therapy , Insulin/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...