Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5086, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37607941

ABSTRACT

The complex life cycle of Plasmodium falciparum requires coordinated gene expression regulation to allow host cell invasion, transmission, and immune evasion. Increasing evidence now suggests a major role for epigenetic mechanisms in gene expression in the parasite. In eukaryotes, many lncRNAs have been identified to be pivotal regulators of genome structure and gene expression. To investigate the regulatory roles of lncRNAs in P. falciparum we explore the intergenic lncRNA distribution in nuclear and cytoplasmic subcellular locations. Using nascent RNA expression profiles, we identify a total of 1768 lncRNAs, of which 718 (~41%) are novels in P. falciparum. The subcellular localization and stage-specific expression of several putative lncRNAs are validated using RNA-FISH. Additionally, the genome-wide occupancy of several candidate nuclear lncRNAs is explored using ChIRP. The results reveal that lncRNA occupancy sites are focal and sequence-specific with a particular enrichment for several parasite-specific gene families, including those involved in pathogenesis and sexual differentiation. Genomic and phenotypic analysis of one specific lncRNA demonstrate its importance in sexual differentiation and reproduction. Our findings bring a new level of insight into the role of lncRNAs in pathogenicity, gene regulation and sexual differentiation, opening new avenues for targeted therapeutic strategies against the deadly malaria parasite.


Subject(s)
Malaria, Falciparum , Malaria , Parasites , RNA, Long Noncoding , Humans , Animals , Plasmodium falciparum/genetics , RNA, Long Noncoding/genetics , Malaria, Falciparum/genetics
2.
Microb Genom ; 6(2)2020 02.
Article in English | MEDLINE | ID: mdl-32017676

ABSTRACT

Proteins interacting with DNA are fundamental for mediating processes such as gene expression, DNA replication and maintenance of genome integrity. Accumulating evidence suggests that the chromatin of apicomplexan parasites, such as Plasmodium falciparum, is highly organized, and this structure provides an epigenetic mechanism for transcriptional regulation. To investigate how parasite chromatin structure is being regulated, we undertook comparative genomics analysis using 12 distinct eukaryotic genomes. We identified conserved and parasite-specific chromatin-associated domains (CADs) and proteins (CAPs). We then used the chromatin enrichment for proteomics (ChEP) approach to experimentally capture CAPs in P. falciparum. A topological scoring analysis of the proteomics dataset revealed stage-specific enrichments of CADs and CAPs. Finally, we characterized, two candidate CAPs: a conserved homologue of the structural maintenance of chromosome 3 protein and a homologue of the crowded-like nuclei protein, a plant-like protein functionally analogous to animal nuclear lamina proteins. Collectively, our results provide a comprehensive overview of CAPs in apicomplexans, and contribute to our understanding of the complex molecular components regulating chromatin structure and genome architecture in these deadly parasites.


Subject(s)
Chromatin/metabolism , Malaria, Falciparum/parasitology , Plasmodium falciparum/metabolism , Proteome/metabolism , Protozoan Proteins/metabolism , Chromatin/genetics , Gene Expression Regulation , Genome, Protozoan , Humans , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Protein Binding , Proteome/genetics , Protozoan Proteins/genetics
3.
Nat Commun ; 9(1): 1910, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29765020

ABSTRACT

The development of malaria parasites throughout their various life cycle stages is coordinated by changes in gene expression. We previously showed that the three-dimensional organization of the Plasmodium falciparum genome is strongly associated with gene expression during its replication cycle inside red blood cells. Here, we analyze genome organization in the P. falciparum and P. vivax transmission stages. Major changes occur in the localization and interactions of genes involved in pathogenesis and immune evasion, host cell invasion, sexual differentiation, and master regulation of gene expression. Furthermore, we observe reorganization of subtelomeric heterochromatin around genes involved in host cell remodeling. Depletion of heterochromatin protein 1 (PfHP1) resulted in loss of interactions between virulence genes, confirming that PfHP1 is essential for maintenance of the repressive center. Our results suggest that the three-dimensional genome structure of human malaria parasites is strongly connected with transcriptional activity of specific gene families throughout the life cycle.


Subject(s)
Genome, Protozoan , Malaria, Falciparum/parasitology , Multigene Family , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Animals , Anopheles/parasitology , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Erythrocytes/parasitology , Female , Humans , Life Cycle Stages , Plasmodium falciparum/growth & development , Plasmodium falciparum/physiology , Protozoan Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...