Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 33(1): e17198, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37933583

ABSTRACT

Microbiomes play an important role in determining the ecology and behaviour of their hosts. However, questions remain pertaining to how host genetics shape microbiomes, and how microbiome composition influences host fitness. We explored the effects of geography, evolutionary history and host genetics on the skin microbiome diversity and structure in a widespread amphibian. More specifically, we examined the association between bacterial diversity and composition and the major histocompatibility complex class II exon 2 diversity in 12 moor frog (Rana arvalis) populations belonging to two geographical clusters that show signatures of past and ongoing differential selection. We found that while bacterial alpha diversity did not differ between the two clusters, MHC alleles/supertypes and genetic diversity varied considerably depending on geography and evolutionary history. Bacterial alpha diversity was positively correlated with expected MHC heterozygosity and negatively with MHC nucleotide diversity. Furthermore, bacterial community composition showed significant variation between the two geographical clusters and between specific MHC alleles/supertypes. Our findings emphasize the importance of historical demographic events on hologenomic variation and provide new insights into how immunogenetic host variability and microbial diversity may jointly influence host fitness with consequences for disease susceptibility and population persistence.


Subject(s)
Genetic Variation , Microbiota , Animals , Selection, Genetic , Genes, MHC Class II/genetics , Histocompatibility Antigens Class II/genetics , Microbiota/genetics , Amphibians/genetics , Alleles
2.
Immunogenetics ; 70(7): 477-484, 2018 07.
Article in English | MEDLINE | ID: mdl-29387920

ABSTRACT

MHC genes are key components in disease resistance and an excellent system for studying selection acting on genetic variation in natural populations. Current patterns of variation in MHC genes are likely to be influenced by past and ongoing selection as well as demographic fluctuations in population size such as those imposed by post-glacial recolonization processes. Here, we investigated signatures of historical selection and demography on an MHC class II gene in 12 moor frog populations along a 1700-km latitudinal gradient. Sequences were obtained from 207 individuals and consecutively assigned into two different clusters (northern and southern clusters, respectively) in concordance with a previously described dual post-glacial colonization route. Selection analyses comparing the relative rates of non-synonymous to synonymous substitutions (dN/dS) suggested evidence of different selection patterns in the northern and the southern clusters, with divergent selection prevailing in the south but uniform positive selection predominating in the north. Also, models of codon evolution revealed considerable differences in the strength of selection: The southern cluster appeared to be under strong selection while the northern cluster showed moderate signs of selection. Our results indicate that the MHC alleles in the north diverged from southern MHC alleles as a result of differential selection patterns.


Subject(s)
Genes, MHC Class II/genetics , Ranidae/immunology , Alleles , Animals , Codon/genetics , Evolution, Molecular , Exons/genetics , Gene Frequency/genetics , Genetic Variation/genetics , Genetics, Population/methods , Phylogeny , Ranidae/genetics , Selection, Genetic/genetics
3.
Mol Ecol ; 22(5): 1231-49, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23346994

ABSTRACT

Andean uplift played a key role in Neotropical bird diversification, yet past dispersal and genetic adaptation to high-altitude environments remain little understood. Here we use multilocus population genetics to study population history and historical demographic processes in the ruddy duck (Oxyura jamaicensis), a stiff-tailed diving duck comprising three subspecies distributed from Canada to Tierra del Fuego and inhabiting wetlands from sea level to 4500 m in the Andes. We sequenced the mitochondrial DNA, four autosomal introns and three haemoglobin genes (α(A), α(D), ß(A)) and used isolation-with-migration (IM) models to study gene flow between North America and South America, and between the tropical and southern Andes. Our analyses indicated that ruddy ducks dispersed first from North America to the tropical Andes, then from the tropical Andes to the southern Andes. While no nonsynonymous substitutions were found in either α globin gene, three amino acid substitutions were observed in the ß(A) globin. Based on phylogenetic reconstruction and power analysis, the first ß(A) substitution, found in all Andean individuals, was acquired when ruddy ducks dispersed from low altitude in North America to high altitude in the tropical Andes, whereas the two additional substitutions occurred more recently, when ruddy ducks dispersed from high altitude in the tropical Andes to low altitude in the southern Andes. This stepwise colonization pattern accompanied by polarized ß(A) globin amino acid replacements suggest that ruddy ducks first acclimatized or adapted to the Andean highlands and then again to the lowlands. In addition, ruddy ducks colonized the Andean highlands via a less common route as compared to other waterbird species that colonized the Andes northwards from the southern cone of South America.


Subject(s)
DNA, Mitochondrial/genetics , Ducks/genetics , Evolution, Molecular , Polymorphism, Genetic , beta-Globins/genetics , Alleles , Altitude , Animals , Gene Flow , Genetic Loci , Haplotypes , Introns , Male , North America , Phylogeography , Sequence Analysis, DNA , South America , alpha-Globins , beta-Globins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...