Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Heliyon ; 9(3): e14340, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36967976

ABSTRACT

Objective: This study aims to compare the salivary and gingival crevicular fluid (GCF) concentrations of five cytokines: IL-1ß, IL-6, IL-17A, IL-33, and Tumor Necrosis Factor-alpha (TNF-α) in patients with OSA and their association with periodontitis. Methods: Samples of saliva and GCF were obtained from 84 patients classified into four groups according to periodontal and OSA diagnosis: G1(H) healthy patients, G2(P) periodontitis and non-OSA patients, G3(OSA) OSA and non-periodontitis patients, and G4(P-OSA) periodontitis and OSA patients. The cytokines in the samples were quantified using multiplexed bead immunoassays. Data were analyzed with the Kruskal-Wallis test, Dunn's multiple comparisons test, and the Spearman correlation test. Results: Stage III periodontitis was the highest in patients with severe OSA (69%; p=0.0142). Similar levels of IL-1ß and IL-6 in saliva were noted in G2(P) and G4(P-OSA). The IL-6, IL-17A and IL-33 levels were higher in the GCF of G4(P-OSA). There was a significant positive correlation between IL-33 in saliva and stage IV periodontitis in G4(P-OSA) (r s  = 0.531). The cytokine profile of the patients in G4(P-OSA) with Candida spp. had an increase of the cytokine's levels compared to patients who did not have the yeast. Conclusions: OSA may increase the risk of developing periodontitis due to increase of IL-1ß and IL-6 in saliva and IL-6, IL-17A and IL-33 in GCF that share the activation of the osteoclastogenesis. Those cytokines may be considered as biomarkers of OSA and periodontitis.

2.
Article in English | MEDLINE | ID: mdl-36767109

ABSTRACT

Periodontitis has been commonly linked to periodontopathogens categorized in Socransky's microbial complexes; however, there is a lack of knowledge regarding "other microorganisms" or "cryptic microorganisms", which are rarely thought of as significant oral pathogens and have been neither previously categorized nor connected to illnesses in the oral cavity. This study hypothesized that these cryptic microorganisms could contribute to the modulation of oral microbiota present in health or disease (periodontitis and/or obstructive sleep apnea (OSA) patients). For this purpose, the presence and correlation among these cultivable cryptic oral microorganisms were identified, and their possible role in both conditions was determined. Data from oral samples of individuals with or without periodontitis and with or without OSA were obtained from a previous study. Demographic data, clinical oral characteristics, and genera and species of cultivable cryptic oral microorganisms identified by MALDI-TOF were recorded. The data from 75 participants were analyzed to determine the relative frequencies of cultivable cryptic microorganisms' genera and species, and microbial clusters and correlations tests were performed. According to periodontal condition, dental-biofilm-induced gingivitis in reduced periodontium and stage III periodontitis were found to have the highest diversity of cryptic microorganism species. Based on the experimental condition, these findings showed that there are genera related to disease conditions and others related to healthy conditions, with species that could be related to different chronic diseases being highlighted as periodontitis and OSA comorbidities. The cryptic microorganisms within the oral microbiota of patients with periodontitis and OSA are present as potential pathogens, promoting the development of dysbiotic microbiota and the occurrence of chronic diseases, which have been previously proposed to be common risk factors for periodontitis and OSA. Understanding the function of possible pathogens in the oral microbiota will require more research.


Subject(s)
Gingivitis , Microbiota , Periodontitis , Sleep Apnea, Obstructive , Humans , Periodontitis/epidemiology , Periodontium , Sleep Apnea, Obstructive/epidemiology
3.
Front Cell Infect Microbiol ; 12: 934298, 2022.
Article in English | MEDLINE | ID: mdl-36189359

ABSTRACT

Objective: The aim of this study was to analyze the cultivable oral microbiota of patients with obstructive sleep apnea (OSA) and its association with the periodontal condition. Methods: The epidemiology profile of patients and their clinical oral characteristics were determined. The microbiota was collected from saliva, subgingival plaque, and gingival sulcus of 93 patients classified into four groups according to the periodontal and clinical diagnosis: Group 1 (n = 25), healthy patients; Group 2 (n = 17), patients with periodontitis and without OSA; Group 3 (n = 19), patients with OSA and without periodontitis; and Group 4 (n = 32), patients with periodontitis and OSA. Microbiological samples were cultured, classified, characterized macroscopically and microscopically, and identified by MALDI-TOF-MS. The distribution of complexes and categories of microorganisms and correlations were established for inter- and intra-group of patients and statistically evaluated using the Spearman r test (p-value <0.5) and a multidimensional grouping analysis. Result: There was no evidence between the severity of OSA and periodontitis (p = 0.2813). However, there is a relationship between the stage of periodontitis and OSA (p = 0.0157), with stage III periodontitis being the one with the highest presence in patients with severe OSA (prevalence of 75%; p = 0.0157), with more cases in men. The greatest distribution of the complexes and categories was found in oral samples of patients with periodontitis and OSA (Group 4 P-OSA); even Candida spp. were more prevalent in these patients. Periodontitis and OSA are associated with comorbidities and oral conditions, and the microorganisms of the orange and red complexes participate in this association. The formation of the dysbiotic biofilm was mainly related to the presence of these complexes in association with Candida spp. Conclusion: Periodontopathogenic bacteria of the orange complex, such as Prevotella melaninogenica, and the yeast Candida albicans, altered the cultivable oral microbiota of patients with periodontitis and OSA in terms of diversity, possibly increasing the severity of periodontal disease. The link between yeasts and periodontopathogenic bacteria could help explain why people with severe OSA have such a high risk of stage III periodontitis. Antimicrobial approaches for treating periodontitis in individuals with OSA could be investigated in vitro using polymicrobial biofilms, according to our findings.


Subject(s)
Periodontitis , Sleep Apnea, Obstructive , Candida , Candida albicans , Causality , Gingiva/microbiology , Humans , Male , Periodontitis/complications , Periodontitis/epidemiology , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/epidemiology
4.
Cell Tissue Res ; 376(2): 221-231, 2019 May.
Article in English | MEDLINE | ID: mdl-30635775

ABSTRACT

Testosterone (T) has been suggested as a promising agent in the bone osteointegration when incorporated in a bioceramic/polymer combination for the local application. The objective of this study was to evaluate the activity of a testosterone composite of poly (lactic-co-glycolic acid) (PLGA), polycaprolactone (PCL), and biphasic calcium phosphate (BCP) as a strategy for enhancing its osteogenic effect and to evaluate tissue response to the composite implantation. PLGA/PCL/BCP/T and PLGA/PCL/BCP composites were prepared and characterized using thermal analysis. Composite morphology and surface characteristics were assessed by SEM and EDS. The evaluations of in vitro effects of testosterone composite on osteoblasts viability, alkaline phosphatase activity, collagen production, osteocalcin concentration, quantification of mineralization, and nitric oxide concentration, after 7, 14, and 21 days. Testosterone was successfully incorporated and composites showed a homogeneously distributed porous structure. The PLGA/PCL/BCP/T composite had a stimulatory effect on osteoblastic activity on the parameters evaluated, except to nitric oxide production. After 60 days, the PLGA/PCL/BCP/T composite showed no chronic inflammatory infiltrate, whereas the PLGA/PCL/BCP composite showed mild chronic inflammatory infiltrate. Angiogenesis, cellular adsorption, and fibrous deposit were observed on the surfaces of implanted composites. The composites in combination with testosterone can be exploited to investigate the use of this scaffold for bone integration.


Subject(s)
Biocompatible Materials , Osteogenesis/drug effects , Testosterone/pharmacology , Tissue Scaffolds/chemistry , Alkaline Phosphatase/metabolism , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Biomineralization/drug effects , Cell Survival , Cells, Cultured , Collagen/metabolism , Hydroxyapatites/chemistry , Male , Neovascularization, Physiologic/drug effects , Nitric Oxide/metabolism , Osteoblasts/cytology , Osteocalcin/metabolism , Polyesters/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Rats , Rats, Wistar
5.
Front Microbiol ; 9: 667, 2018.
Article in English | MEDLINE | ID: mdl-29681894

ABSTRACT

The antimicrobial peptide LyeTxI isolated from the venom of the spider Lycosa erythrognatha is a potential model to develop new antibiotics against bacteria and fungi. In this work, we studied a peptide derived from LyeTxI, named LyeTxI-b, and characterized its structural profile and its in vitro and in vivo antimicrobial activities. Compared to LyeTxI, LyeTxI-b has an acetylated N-terminal and a deletion of a His residue, as structural modifications. The secondary structure of LyeTxI-b is a well-defined helical segment, from the second amino acid to the amidated C-terminal, with no clear partition between hydrophobic and hydrophilic faces. Moreover, LyeTxI-b shows a potent antimicrobial activity against Gram-positive and Gram-negative planktonic bacteria, being 10-fold more active than the native peptide against Escherichia coli. LyeTxI-b was also active in an in vivo model of septic arthritis, reducing the number of bacteria load, the migration of immune cells, the level of IL-1ß cytokine and CXCL1 chemokine, as well as preventing cartilage damage. Our results show that LyeTxI-b is a potential therapeutic model for the development of new antibiotics against Gram-positive and Gram-negative bacteria.

6.
Mater Sci Eng C Mater Biol Appl ; 83: 25-34, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29208285

ABSTRACT

Cancer is one of the leading causes of morbidity and mortality Worldwide, 19.3 million new cancer cases are expected to be identified in 2025. Among the therapeutic arsenal to cancer control one could find the Doxycycline and the nano hydroxyapatite. The Doxycycline (Dox) not only shown antibiotic effect but also exhibits a wide range of pleiotropic therapeutic properties as the control of the invasive and metastatic cancer cells characteristics. The purpose of the present study was to evaluate both cytotoxicity in vitro and antibacterial activity of electrospun Dox-loaded hybrid nanofibrous scaffolds composed by hydroxyapatite nanoparticles (nHA), poly-ε-caprolactone (PCL) and gelatin (Gel) polymers. Both nHA and Dox were dispersed into different PCL/Gel ratios (70:30, 60:40, 50:50wt%) solutions to form electrospun nanofibers. The nHA and Dox/nHA/PCL-Gel hybrid nanofibers were characterized by TEM microscopy. In vitro Dox release behavior from all of these Dox-loaded nHA/PCL-Gel nanofibers showed the same burst release profile due to the high solubility of Gel in the release medium. Antibacterial properties of nanofiber composites were evaluated using Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Porphyromonas gingivalis (P. gingivalis) bacteria. The co-delivery of nHA particles and Dox simultaneously exhibited inhibition of bacterial growth more efficiently than the delivery of either Dox or nHA at the same concentrations, indicating a synergistic effect. The results showed that cancer cell tested had different sensibility to co-delivery system. On the whole, A-431 cells were found exhibited the most pronounced synergistic effect compared to CACO-2 and 4T1 cancer cells. Based on the anticancer as well as the antimicrobial results in this study, the developed Dox/nHA/PCL-Gel composite nanofibers are suitable as a drug delivery system with potential applications in the biomedical fields.


Subject(s)
Anti-Bacterial Agents/chemistry , Caproates/chemistry , Doxycycline/chemistry , Durapatite/chemistry , Gelatin/chemistry , Lactones/chemistry , Nanofibers/chemistry , Nanoparticles/chemistry , Antineoplastic Agents/chemistry , Caco-2 Cells , Drug Delivery Systems , Drug Synergism , Humans , Nanofibers/ultrastructure , Nanoparticles/ultrastructure
7.
J Photochem Photobiol B ; 177: 85-94, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29107206

ABSTRACT

Bacterial soft rot is responsible for the loss of about 25% of worldwide production in vegetables and fruits. Efforts have been made to develop an effective nanosponge with the capacity to load and release antibacterial drugs to protect plants. Based on the potential of the ZnO nanoparticles (ZnO-NPs) to achieve this goal, this study synthesized NP via the sol-gel and hydrothermal methods by controlling native defects, such as oxygen vacancies, using thermal treatments and reduced atmospheres. To characterize the ZnO NPs, X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), optical spectroscopy, electron paramagnetic resonance (EPR), Zeta Potential measurements and surface area with the Brunauer-Emmett-Teller (BET) method were used. The photophysical and photochemical properties via spin trapping method aligned with EPR using UVA light showed a greater formation of electron-hole pairs and hydroxyl radicals for the reduced ZnO NPs when compared with the oxidized ones. Additionally, we found that reduced ZnO-NPs have high effectively against Escherichia coli, Erwinia carotovora and Pantoea sp. bacteria using the photocatalytic effect in the UV range. Moreover, ZnO-NPs loaded with DOX release profile enables the release of DOX within 46days, where 25% was released during the first 10h followed by a second delivery phase with an interesting short-term efficacy (<1day) against E. carotovora and Pantoea sp. Bacteria. For the first time, it was demonstrated that ZnO-NPs and ZnO-NPs loaded with DOX have efficient UV photocatalytic activities against bacterial soft rot infections.


Subject(s)
Anti-Bacterial Agents/chemistry , Doxycycline/chemistry , Drug Carriers/chemistry , Metal Nanoparticles/chemistry , Zinc Oxide/chemistry , Anti-Bacterial Agents/pharmacology , Catalysis , Drug Liberation , Electron Spin Resonance Spectroscopy , Escherichia coli/drug effects , Escherichia coli/radiation effects , Microbial Sensitivity Tests , Oxidation-Reduction , Pantoea/drug effects , Particle Size , Pectobacterium carotovorum/drug effects , Pectobacterium carotovorum/radiation effects , Ultraviolet Rays
8.
Carbohydr Polym ; 163: 1-9, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28267484

ABSTRACT

In the present work, we study the role of different components in the formation of more stable iron oxide magnetic nanoparticles (MNPs): ß-cyclodextrin (BCD), 2-hydroxypropyl-ß-cyclodextrin (HP) and citrate anion. MNPs formulations were characterized by FTIR, particles size measurements, zeta potential based on dynamic light scattering principle technique, X-ray powder pattern diffraction, XPS spectroscopy, transmission electron microscopy and thermogravimetric analysis. The results showed that cyclodextrins and citrate plays a key role in order to obtain a lower size of coated MNPs and proved to be an efficient strategy to obtain a more stable colloidal dispersion, avoiding the nanoparticles oxidation, enhancing the irinotecan incorporation and release. Furthermore, citrate-coated BCD-MNPs showed the same cytotoxicity of the free IRI.

9.
Photodiagnosis Photodyn Ther ; 18: 252-256, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28344047

ABSTRACT

BACKGROUND: Photodynamic therapy (PDT) is an antitumour treatment that employs the combination of a photosensitive compound, oxygen and visible light. To improve the antitumour activity of PDT, the present study used the strategy of combining PDT with erlotinib (ERL), a drug frequently used in the treatment of epidermoid carcinoma. METHODS: An MTT cell viability assay was used to evaluate the cytotoxicity of PDT combined with ERL on A431 epidermoid carcinoma cells in vitro. This study evaluated the cytotoxicity of the following treatments: red laser irradiation (660nm) at different power densities (1.25-180J/cm2), the photosensitizer methylene blue (MB) at concentrations of 0.39-100µM, PDT (12.5µM MB and laser power densities from 1.25 to 180J/cm2), and PDT (12.5µM MB and a laser density of 120J/cm2) plus ERL (1µM). RESULTS: The laser power densities that were tested showed no cytotoxicity in A431 cells. MB showed a dose-dependent cytotoxicity. In PDT, an increase in the dose of light resulted in an increase in the cytotoxicity of MB. In addition, there was a sub-additive effect between PDT and ERL compared to the effect of each therapy alone. CONCLUSIONS: The sub-additive effect between PDT and ERL suggests that their combination may be an important strategy in the treatment of epidermoid carcinoma.


Subject(s)
Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Chemoradiotherapy/methods , Erlotinib Hydrochloride/administration & dosage , Photochemotherapy/methods , Antineoplastic Agents/administration & dosage , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Combined Modality Therapy/methods , Dose-Response Relationship, Drug , Dose-Response Relationship, Radiation , Humans , Photosensitizing Agents/administration & dosage , Radiation Dosage , Treatment Outcome
10.
Carbohydr Polym ; 156: 417-426, 2017 Jan 20.
Article in English | MEDLINE | ID: mdl-27842841

ABSTRACT

This study aimed to compare two nanofiber drug delivery systems that were prepared with an electrospun process and have the potential to serve as adjuvants for the treatment of periodontal disease. The first system was composed of polycaprolactone loaded with tetracycline (TCN) and the second was composed of polycaprolactone loaded with tetracycline/ß-cyclodextrin (TCN:BCD). An antimicrobial diffusion test was performed for each of these sets of nanofibers with the microorganisms, Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis, both of which contribute to periodontal disease. In vitro release profiles were also obtained, and the nanofibers were characterized by thermal analysis, x-ray powder diffraction, infrared absorption spectroscopy, and scanning electron microscopy. Profiles of the TCN and TCN:BCD nanofibers showed that drug release occurred for up to 14days. However, the TCN:BCD nanofibers appeared to better protect and enhance the biological absorption of TCN due to the formation of a TCN:BCD inclusion complex.


Subject(s)
Aggregatibacter/drug effects , Nanofibers/chemistry , Porphyromonas/drug effects , Tetracycline/chemistry , Tetracycline/pharmacology , beta-Cyclodextrins/chemistry , beta-Cyclodextrins/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Microbial Sensitivity Tests
11.
Biointerphases ; 11(4): 04B307, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27907988

ABSTRACT

The aim of this study was to determine the physical properties and antimicrobial and antiproliferative effects of the KR12 peptide complexed with 2-hydroxypropyl-ß-cyclodextrin (Hp-ßCd) in vitro. The KR12:Hp-ßCd composition was evaluated for particle size and its zeta (ζ)-potential in the presence and absence of cells. Antimicrobial activity against Streptococcus mutans, Actinobacillus actinomycetemcomitans, and Porphyromonas gingivalis for the peptide alone or associated was evaluated by minimal inhibitory concentration. The cytotoxicity of the peptide and composition toward fibroblasts, Caco-2 cells, and A431 cells was determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide; thiazolyl blue assay and hemolysis assay. Membrane integrity was analyzed by the lactate dehydrogenase assay. KR12:Hp-ßCd decreased the peptide concentration required for the antimicrobial effect. Moreover, this composition was able to modify cell surface parameters, such as ζ-potential, and alter the degree of hemolysis induced by KR12. However, the KR12:Hp-ßCd and KR12 alone alter the zeta potential of cells to a similar extent, suggesting a similar level of membrane interaction. The peptide alone inhibited the proliferation of Caco-2 and A431 cells more efficiently than KR12:Hp-ßCd (p < 0.001), but did not show significant cytotoxic effects via the dehydrogenase lactate assay. Both substances were effective in inhibiting the growth of odontopathogenic bacteria, as well as inhibiting Caco-2 epithelial cells. These observations highlight the potential antimicrobial and antiproliferative effects of KR12 peptide alone or associated with Hp-ßCd.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Bacteria/drug effects , Cyclodextrins/pharmacology , Epithelial Cells/drug effects , Fibroblasts/drug effects , Peptides/pharmacology , Cell Line , Cell Survival/drug effects , Cyclodextrins/chemical synthesis , Erythrocytes/drug effects , Hemolysis , Humans , L-Lactate Dehydrogenase/analysis , Microbial Sensitivity Tests , Peptides/chemical synthesis
12.
Neuroscience ; 337: 224-241, 2016 Nov 19.
Article in English | MEDLINE | ID: mdl-27615031

ABSTRACT

The theta rhythm is necessary for hippocampal-dependent spatial learning. It has been proposed that each hippocampal stratum can generate a current theta dipole. Therefore, considering that each hippocampal circuit (CA1, CA3, and Dentate Gyrus (DG)) contributes differently to distinct aspects of a spatial memory, the theta oscillations on each stratum and their couplings may exhibit oscillatory dynamics associated with different stages of learning. To test this hypothesis, the theta oscillations from five hippocampal strata were recorded in the rat during different stages of learning in a Morris maze. The peak power, the relative power (RP) and the coherence between hippocampal strata were analyzed. The early acquisition stage of the Morris task was characterized by the predominance of slow frequency theta activity and high coupling between specific hippocampal strata at slow frequencies. However, on the last training day, the theta oscillations were faster in all hippocampal strata, with tighter coupling at fast frequencies between the CA3 pyramidal stratum and other strata. Our results suggest that modifications to the theta frequency and its coupling can be a means by which the hippocampus differentially operates during acquisition and retrieval states.


Subject(s)
Hippocampus/physiology , Memory/physiology , Spatial Learning/physiology , Theta Rhythm/physiology , Animals , Behavior, Animal/physiology , Dentate Gyrus/physiology , Male , Rats, Sprague-Dawley
13.
Front Pharmacol ; 6: 250, 2015.
Article in English | MEDLINE | ID: mdl-26578960

ABSTRACT

Hippocampal theta activity is related to spatial information processing, and high-frequency theta activity, in particular, has been linked to efficient spatial memory performance. Theta activity is regulated by the synchronizing ascending system (SAS), which includes mesencephalic and diencephalic relays. The supramamillary nucleus (SUMn) is located between the reticularis pontis oralis and the medial septum (MS), in close relation with the posterior hypothalamic nucleus (PHn), all of which are part of this ascending system. It has been proposed that the SUMn plays a role in the modulation of hippocampal theta-frequency; this could occur through direct connections between the SUMn and the hippocampus or through the influence of the SUMn on the MS. Serotonergic raphe neurons prominently innervate the hippocampus and several components of the SAS, including the SUMn. Serotonin desynchronizes hippocampal theta activity, and it has been proposed that serotonin may regulate learning through the modulation of hippocampal synchrony. In agreement with this hypothesis, serotonin depletion in the SUMn/PHn results in deficient spatial learning and alterations in CA1 theta activity-related learning in a Morris water maze. Because it has been reported that SUMn inactivation with lidocaine impairs the consolidation of reference memory, we asked whether changes in hippocampal theta activity related to learning would occur through serotonin depletion in the SUMn, together with deficiencies in memory. We infused 5,7-DHT bilaterally into the SUMn in rats and evaluated place learning in the standard Morris water maze task. Hippocampal (CA1 and dentate gyrus), septal and SUMn EEG were recorded during training of the test. The EEG power in each region and the coherence between the different regions were evaluated. Serotonin depletion in the SUMn induced deficient spatial learning and altered the expression of hippocampal high-frequency theta activity. These results provide evidence in support of a role for serotonin as a modulator of hippocampal learning, acting through changes in the synchronicity evoked in several relays of the SAS.

14.
Colloids Surf B Biointerfaces ; 136: 248-55, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26402423

ABSTRACT

The objective of this study was to evaluate the in vivo anti-inflammatory angiogenesis activity and in vitro cytotoxicity on normal and cancer cell models of a drug delivery system consisting of poly(lactic-co-glycolic acid) nanofibers loaded with daunorubicin (PLGA-DNR) that were fabricated using an electrospinning process. The PLGA-DNR nanofibers were also characterized by thermogravimetric analysis (TGA), differential thermal analysis (DTA) and differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and confocal fluorescence microscopy. In vitro release of DNR from the nanofibers and its corresponding mechanism were also evaluated. Sixty-five percent of the DNR was released in an initial burst over 8h, and by 1224 h, eighty-five percent of the DNR had been released. The Higuchi model yielded the best fit to the DNR release profile over the first 8h, and the corresponding data from 24 to 1224 h could be modeled using zero-order kinetics. The PLGA-DNR nanofibers exhibited a higher cytotoxicity to A431 cells than free DNR but a cytotoxicity similar to free DNR against fibroblast cells. A higher antiangiogenic effect of PLGA nanofibers was observed in the in vivo data when compared to free DNR, and no inflammatory potential was observed for the nanofibers.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Daunorubicin/pharmacology , Lactic Acid/chemistry , Nanofibers , Polyglycolic Acid/chemistry , Animals , Cell Line , Cell Line, Tumor , Humans , Male , Mice , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Polylactic Acid-Polyglycolic Acid Copolymer , X-Ray Diffraction
15.
Indian J Dent Res ; 26(3): 284-8, 2015.
Article in English | MEDLINE | ID: mdl-26275197

ABSTRACT

AIM: The aim of this study was to evaluate the correlation between the cytotoxicity and degree of conversion (DC) of self-etch resin cements with or without photopolymerization. MATERIALS AND METHODS: Three self-etching resin cements with or without photopolymerization were evaluated. Six test groups and one control group represented by a standardized L929-fibroblast cell culture were formed. The DC was measured by Fourier transform infrared spectrometry and was correlated with cell culture survival. STATISTICAL ANALYSIS: The analysis of variance and Bonferroni-Holm tests were applied (P < 0.05). RESULTS: The results show that, the cytotoxicity of self-etching resin cements is directly related to the DC. With the exception of Unicem, the other cements show some level of cytotoxicity, even with photopolymerization. CONCLUSION: These results indicate that photopolymerization of dual cure self-etching resin cements decrease toxic effects on cell culture. Adequate photopolymerization should be considered during cementation when using dual polymerization self-etching resin cements.


Subject(s)
Fibroblasts/metabolism , Resin Cements/chemistry , Animals , Cell Survival , Humans , Mice , Polymerization
16.
Mater Sci Eng C Mater Biol Appl ; 54: 252-61, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26046289

ABSTRACT

Herein, we used an electrospinning process to develop highly efficacious and hydrophobic coaxial nanofibers based on poly-cyclodextrin (polyCD) associated with poly(methacrylic acid) (PMAA) that combines polymeric and supramolecular features for modulating the release of the hydrophilic drug, propranolol hydrochloride (PROP). For this purpose, polyCD was synthesized and characterized, and its biocompatibility was assessed using fibroblast cytotoxicity tests. Moreover, the interactions between the guest PROP molecule and both polyCD and ßCD were found to be spontaneous. Subsequently, PROP was encapsulated in uniaxial and coaxial polyCD/PMAA nanofibers. A lower PROP burst effect (reduction of approximately 50%) and higher modulation were observed from the coaxial than from the uniaxial fibers. Thus, the coaxial nanofibers could potentially be a useful strategy for developing a controlled release system for hydrophilic molecules.


Subject(s)
Cellulose/chemistry , Cyclodextrins/chemistry , Drug Delivery Systems/methods , Nanofibers/chemistry , Polymethacrylic Acids/chemistry , Biocompatible Materials/chemistry , Cells, Cultured , Cells, Immobilized , Fibroblasts/cytology , Fibroblasts/drug effects , Gingiva/cytology , Gingiva/drug effects , Humans , Hydrophobic and Hydrophilic Interactions , Magnetic Resonance Spectroscopy , Microscopy, Electron, Transmission
17.
Molecules ; 19(9): 13948-64, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25197932

ABSTRACT

Current procedures for the detection and identification of bacterial infections are laborious, time-consuming, and require a high workload and well-equipped laboratories. Therefore the work presented herein developed a simple, fast, and low cost method for bacterial detection based on hydroxyapatite nanoparticles with a nutritive mixture and the fluorogenic substrate. Calcium phosphate ceramic nanoparticles were characterized and integrated with a nutritive mixture for the early detection of bacteria by visual as well as fluorescence spectroscopy techniques. The composite was obtained by combining calcium phosphate nanoparticles (Ca:P ratio, 1.33:1) with a nutritive mixture of protein hydrolysates and carbon sources, which promote fast bacterial multiplication, and the fluorogenic substrate 4-methylumbellipheryl-ß-D-glucuronide (MUG). The composite had an average particle size of 173.2 nm and did not show antibacterial activity against Gram-negative or Gram-positive bacteria. After an Escherichia coli suspension was in contact with the composite for 60-90 min, fluorescence detected under UV light or by fluorescence spectrophotometer indicated the presence of bacteria. Intense fluorescence was observed after incubation for a maximum of 90 min. Thus, this calcium phosphate nanocomposite system may be useful as a model for the development of other nanoparticle composites for detection of early bacterial adhesion.


Subject(s)
Ceramics/chemistry , Hydroxyapatites/chemistry , Nanocomposites/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Infections/diagnosis , Enterococcus faecalis/drug effects , Escherichia coli/drug effects , Humans , Hydroxyapatites/pharmacology , Limit of Detection , Nanocomposites/ultrastructure , Particle Size , Pseudomonas aeruginosa/drug effects , Spectrometry, Fluorescence , Staphylococcus aureus/drug effects , Surface Properties
18.
Biointerphases ; 9(2): 029018, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24985222

ABSTRACT

Nano- or microhydroxyapatites with microbiological properties are being used to detect pathogens in clinical samples and industrial environments. In this study, the calcium phosphates coral-hydroxyapatite and biphasic calcium phosphate were characterized physicochemically using x-ray diffraction, thermogravimetric, and differential thermal analysis. The morphology, texture, and chemical composition of the ceramics were also investigated using scanning electron microscopy with energy dispersive spectroscopy. The biocompatibility of the ceramics was evaluated using Escherichia coli and Enterococcus faecalis. Microorganisms were detected by incorporating the enzyme markers 4-metilumbelliferil-ß-d-glucoside and 4-metilumbelliferil-ß-d-glucuronide in the ceramic powders and evaluating fluorescence. The characterization of the ceramics revealed typical characteristics, such as crystallinity, thermal stability, and chemical composition, consistent with other calcium phosphates. The calcium phosphates coral-hydroxyapatite and biphasic calcium phosphate ceramics differed from one another in morphology, structural topography, particle size distribution, and the capacity to absorb water. These properties can influence the rates of microbiological responses and bacterial detection. Although both materials are suitable for use as structural supports in microbial diagnostic systems, BCP was more efficient and detected E. coli and E. faecalis more rapidly than CHA.


Subject(s)
Anthozoa/metabolism , Biocompatible Materials/metabolism , Calcium Phosphates/chemistry , Durapatite/chemistry , Enterococcus faecalis/isolation & purification , Escherichia coli/isolation & purification , Animals , Biocompatible Materials/chemistry , Ceramics/chemistry , Enterococcus faecalis/metabolism , Escherichia coli/metabolism , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Glucuronides/chemistry , Glucuronides/metabolism , Particle Size , Spectrometry, Fluorescence , Ultraviolet Rays
19.
Colloids Surf B Biointerfaces ; 118: 194-201, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24816509

ABSTRACT

Doxycycline is a semi-synthetic antibiotic commonly used for the treatment of many aerobic and anaerobic bacteria. It inhibits the activity of matrix metalloproteinases (MMPs) and affects cell proliferation. In this study, the structural and thermodynamic parameters of free DOX and a DOX/ßCD complex were investigated, as well as their interactions and effects on Staphylococcus aureus cells and cellular cytotoxicity. Complexation of DOX and ßCD was confirmed to be an enthalpy- and entropy-driven process, and a low equilibrium constant was obtained. Treatment of S. aureus with higher concentrations of DOX or DOX/ßCD resulted in an exponential decrease in S. aureus cell size, as well as a gradual neutralization of zeta potential. These thermodynamic profiles suggest that ion-pairing and hydrogen bonding interactions occur between DOX and the membrane of S. aureus. In addition, the adhesion of ßCD to the cell membrane via hydrogen bonding is hypothesized to mediate a synergistic effect which accounts for the higher activity of DOX/ßCD against S. aureus compared to pure DOX. Lower cytotoxicity and induction of osteoblast proliferation was also associated with DOX/ßCD compared with free DOX. These promising findings demonstrate the potential for DOX/ßCD to mediate antimicrobial activity at lower concentrations, and provides a strategy for the development of other antimicrobial formulations.


Subject(s)
Cell Membrane/drug effects , Doxycycline/chemistry , Doxycycline/pharmacology , Staphylococcus aureus/cytology , beta-Cyclodextrins/chemistry , beta-Cyclodextrins/pharmacology , Animals , Calorimetry , Cell Death/drug effects , Cell Proliferation/drug effects , Differential Thermal Analysis , Hydrodynamics , Light , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , Proton Magnetic Resonance Spectroscopy , Rats, Wistar , Scattering, Radiation , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Static Electricity , Thermodynamics , Thermogravimetry
20.
Acta Odontol Latinoam ; 22(2): 93-7, 2009.
Article in English | MEDLINE | ID: mdl-19839484

ABSTRACT

The purpose of this in vitro study was to evaluate the antimicrobial effect of photodynamic therapy on Streptococcus mutans (A TCC 25175) suspensions, using a red laser for one minute in combination with toluidine blue O (TBO) or methylene blue (MB). Both photosensitizers were used in three concentrations (25, 10 and 5 mg/L). The activity ofphotosensitizers and laser irradiation were tested separately on the bacteria, as well as the irradiation of this light source in the presence of the TBO or MB. These groups were compared to a control group, in which the microorganism did not receive any treatment. The activity of both TBO and MB or laser irradiation, alone, were not able to reduce the number of S. mutans. In the groups of lethal photosensitization, a bacterial reduction of 70% for TBO and 73% for MB was observed when these photosensitizers were used at 25 mg/L and a reduction of 48% was observed for MB at 5mg/L. In other concentrations there were no significant differences in comparison to the control group. Both the TBO and the MB at 25 mg/L associated with a red laser had an excellent potential for use in PDT in lethal sensitization of S. mutans.


Subject(s)
Methylene Blue/pharmacology , Photosensitizing Agents/pharmacology , Streptococcus mutans/drug effects , Streptococcus mutans/radiation effects , Tolonium Chloride/pharmacology , Dose-Response Relationship, Drug
SELECTION OF CITATIONS
SEARCH DETAIL
...