Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Neuroinflammation ; 16(1): 143, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31291963

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a neuropathology strongly associated with the activation of inflammatory pathways. Accordingly, inflammation resulting from obesity exacerbates learning and memory deficits in humans and in animal models of AD. Consequently, the long-term use of non-steroidal anti-inflammatory agents diminishes the risk for developing AD, but the side effects produced by these drugs limit their prophylactic use. Thus, plants natural products have become an excellent option for modern therapeutics. Malva parviflora is a plant well known for its anti-inflammatory properties. METHODS: The present study was aimed to determine the anti-inflammatory potential of M. parviflora leaf hydroalcoholic extract (MpHE) on AD pathology in lean and obese transgenic 5XFAD mice, a model of familial AD. The inflammatory response and Amyloid ß (Aß) plaque load in lean and obese 5XFAD mice untreated or treated with MpHE was evaluated by immunolocalization (Iba-1 and GFAP) and RT-qPCR (TNF) assays and thioflavin-S staining, respectively. Spatial learning memory was assessed by the Morris Water Maze behavioral test. Microglia phagocytosis capacity was analyzed in vivo and by ex vivo and in vitro assays, and its activation by morphological changes (phalloidin staining) and expression of CD86, Mgl1, and TREM-2 by RT-qPCR. The mechanism triggered by the MpHE was characterized in microglia primary cultures and ex vivo assays by immunoblot (PPAR-γ) and RT-qPCR (CD36) and in vivo by flow cytometry, using GW9662 (PPAR-γ inhibitor) and pioglitazone (PPAR-γ agonist). The presence of bioactive compounds in the MpHE was determined by HPLC. RESULTS: MpHE efficiently reduced astrogliosis, the presence of insoluble Aß peptides in the hippocampus and spatial learning impairments, of both, lean, and obese 5XFAD mice. This was accompanied by microglial cells accumulation around Aß plaques in the cortex and the hippocampus and decreased expression of M1 inflammatory markers. Consistent with the fact that the MpHE rescued microglia phagocytic capacity via a PPAR-γ/CD36-dependent mechanism, the MpHE possess oleanolic acid and scopoletin as active phytochemicals. CONCLUSIONS: M. parviflora suppresses neuroinflammation by inhibiting microglia pro-inflammatory M1 phenotype and promoting microglia phagocytosis. Therefore, M. parviflora phytochemicals represent an alternative to prevent cognitive impairment associated with a metabolic disorder as well as an effective prophylactic candidate for AD progression.


Subject(s)
Alzheimer Disease , Brain/drug effects , Cognitive Dysfunction/pathology , Microglia/drug effects , Plant Extracts/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Brain/pathology , Cognitive Dysfunction/etiology , Diet, High-Fat/adverse effects , Disease Models, Animal , Malva , Maze Learning/drug effects , Mice , Mice, Transgenic , Microglia/metabolism , PPAR gamma/metabolism , Phagocytosis/drug effects , Plant Leaves
2.
J Neurosci Res ; 96(2): 234-246, 2018 02.
Article in English | MEDLINE | ID: mdl-28801921

ABSTRACT

ß-Amyloid peptide accumulation in the cortex and in the hippocampus results in neurodegeneration and memory loss. Recently, it became evident that the inflammatory response triggered by ß-Amyloid peptides promotes neuronal cell death and degeneration. In addition to inflammation, ß-Amyloid peptides also induce alterations in neuronal autophagy, eventually leading to neuronal cell death. Thus, here we evaluated whether the inflammatory response induced by the ß-Amyloid peptides impairs memory via disrupting the autophagic flux. We show that male mice overexpressing ß-Amyloid peptides (5XFAD) but lacking caspase-1, presented reduced ß-Amyloid plaques in the cortex and in the hippocampus; restored brain autophagic flux and improved learning and memory capacity. At the molecular level, inhibition of the inflammatory response in the 5XFAD mice restored LC3-II levels and prevented the accumulation of oligomeric p62 and ubiquitylated proteins. Furthermore, caspase-1 deficiency reinstates activation of the AMPK/Raptor pathway while down-regulating AKT/mTOR pathway. Consistent with this, we found an inverse correlation between the increase of autophagolysosomes in the cortex of 5XFAD mice lacking caspase-1 and the presence of mitochondria with altered morphology. Together our results indicate that ß-Amyloid peptide-induced caspase-1 activation, disrupts autophagy in the cortex and in the hippocampus resulting in neurodegeneration and memory loss.


Subject(s)
Alzheimer Disease/complications , Autophagy/genetics , Caspase 1/metabolism , Gene Expression Regulation/genetics , Inflammation/metabolism , Memory Disorders , Neurons/metabolism , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Brain/pathology , Caspase 1/genetics , Disease Models, Animal , Inflammation/etiology , Inflammation/pathology , Male , Maze Learning/physiology , Memory Disorders/etiology , Memory Disorders/metabolism , Memory Disorders/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/genetics , Nerve Tissue Proteins/metabolism , Neurons/pathology , Neurons/ultrastructure , Peptide Fragments/metabolism , Presenilin-1/genetics , Signal Transduction/genetics
3.
Int J Dev Neurosci ; 31(6): 359-69, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23665156

ABSTRACT

Learning and memory are basic functions of the brain that allowed human evolution. It is well accepted that during learning and memory formation the dynamic establishment of new active synaptic connections is crucial. Persistent synaptic activation leads to molecular events that include increased release of neurotransmitters, increased expression of receptors on the postsynaptic neuron, thus creating a positive feedback that results in the activation of distinct signaling pathways that temporally and permanently alter specific patterns of gene expression. However, the epigenetic changes that allow the establishment of long term genetic programs that control learning and memory are not completely understood. Even less is known regarding the signaling events triggered by synaptic activity that regulate these epigenetic marks. Here we review the current understanding of the molecular mechanisms controlling activity-dependent gene transcription leading synaptic plasticity and memory formation. We describe how Ca(2+) entry through N-methyl-d-aspartate-type glutamate neurotransmitter receptors result in the activation of specific signaling pathways leading to changes in gene expression, giving special emphasis to the recent data pointing out different epigenetic mechanisms (histone acetylation, methylation and phosphorylation as well as DNA methylation and hydroxymethylation) underlying learning and memory.


Subject(s)
Epigenesis, Genetic/physiology , Neuronal Plasticity/physiology , Synapses/physiology , Transcription, Genetic , Animals , Humans , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/physiology , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...