Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 10(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383617

ABSTRACT

The representative of the Lentivirus genus is the human immunodeficiency virus type 1 (HIV-1), the causative agent of acquired immunodeficiency syndrome (AIDS). To date, there is no cure for AIDS because of the existence of the HIV-1 reservoir. HIV-1 infection can persist for decades despite effective antiretroviral therapy (ART), due to the persistence of infectious latent viruses in long-lived resting memory CD4+ T cells, macrophages, monocytes, microglial cells, and other cell types. However, the biology of HIV-1 latency remains incompletely understood. Retroviral long terminal repeat region (LTR) plays an indispensable role in controlling viral gene expression. Regulation of the transcription initiation plays a crucial role in establishing and maintaining a retrovirus latency. Whether and how retroviruses establish latency and reactivate remains unclear. In this article, we describe what is known about the regulation of LTR-driven transcription in HIV-1, that is, the cis-elements present in the LTR, the role of LTR transcription factor binding sites in LTR-driven transcription, the role of HIV-1-encoded transactivator protein, hormonal effects on virus transcription, impact of LTR variability on transcription, and epigenetic control of retrovirus LTR. Finally, we focus on a novel clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/dCas9)-based strategy for HIV-1 reservoir purging.

2.
Clin Epigenetics ; 11(1): 134, 2019 09 13.
Article in English | MEDLINE | ID: mdl-31519219

ABSTRACT

BACKGROUND: Persistence of latent, replication-competent provirus in CD4+ T cells of human immunodeficiency virus (HIV)-infected individuals on antiretroviral treatment (ART) is the main obstacle for virus eradication. Methylation of the proviral 5' long terminal repeat (LTR) promoter region has been proposed as a possible mechanism contributing to HIV latency; however, conflicting observations exist regarding its relevance. We assessed 5'-LTR methylation profiles in total CD4+ T cells from blood of 12 participants on short-term ART (30 months) followed up for 2 years, and a cross-sectional group of participants with long-term ART (6-15 years), using next generation sequencing. We then looked for associations between specific 5'-LTR methylation patterns and baseline and follow-up clinical characteristics. RESULTS: 5'-LTR methylation was observed in all participants and behaved dynamically. The number of 5'-LTR variants found per sample ranged from 1 to 13, with median sequencing depth of 16270× (IQR 4107×-46760×). An overall significant 5'-LTR methylation increase was observed at month 42 compared to month 30 (median CpG Methylation Index: 74.7% vs. 0%, p = 0.025). This methylation increase was evident in a subset of participants (methylation increase group), while the rest maintained fairly high and constant methylation (constant methylation group). Persons in the methylation increase group were younger, had higher CD4+ T cell gain, larger CD8% decrease, and larger CD4/CD8 ratio change after 48 months on ART (all p < 0.001). Using principal component analysis, the constant methylation and methylation increase groups showed low evidence of separation along time (factor 2: p = 0.04). Variance was largely explained (21%) by age, CD4+/CD8+ T cell change, and CD4+ T cell subpopulation proportions. Persons with long-term ART showed overall high methylation (median CpG Methylation Index: 78%; IQR 71-87%). No differences were observed in residual plasma viral load or proviral load comparing individuals on short-term (both at 30 or 42 months) and long-term ART. CONCLUSIONS: Our study shows evidence that HIV 5'-LTR methylation in total CD4+ T cells is dynamic along time and that it can follow different temporal patterns that are associated with a combination of baseline and follow-up clinical characteristics. These observations may account for differences observed between previous contrasting studies.


Subject(s)
DNA Methylation , HIV Infections/drug therapy , HIV Long Terminal Repeat , HIV-1/physiology , Adult , Age Factors , Antiretroviral Therapy, Highly Active , CD4-Positive T-Lymphocytes/virology , Cross-Sectional Studies , Female , HIV Infections/virology , HIV-1/genetics , High-Throughput Nucleotide Sequencing , Humans , Longitudinal Studies , Male , Middle Aged , Principal Component Analysis , Proviruses/genetics , Proviruses/physiology , Sequence Analysis, RNA , Virus Latency
3.
In Vitro Cell Dev Biol Anim ; 50(5): 453-63, 2014.
Article in English | MEDLINE | ID: mdl-24442370

ABSTRACT

Cell fusion occurs in physiological and pathological conditions and plays a role in regulation of cell fate. The analysis of cell population dynamics and cell cycle in cell-cell fusion experiments is necessary to determine changes in the quantitative equilibrium of cell populations and to identify potential bystander effects. Here, using cocultures of Jurkat HIV-1 envelope expressing cells and CD4(+) cells as a model system and flow cytometry for the analysis, the number, viability, and cell cycle status of the populations participating in fusion were determined. In 3-day cocultures, a sustained reduction of the number of CD4(+) cells was observed while they showed high viability and normal cell cycle progression; fusion, but not inhibition of proliferation or death, accounted for their decrease. In contrast, the number of Env(+) cells decreased in cocultures due to fusion, death, and an inherent arrest at G1. Most of syncytia formed in the first 6 h of coculture showed DNA synthesis activity, indicating that the efficient recruitment of proliferating cells contributed to amplify the removal of CD4(+) cells by syncytia formation. Late in cocultures, approximately 50% of syncytia were viable and a subpopulation still underwent DNA synthesis, even when the recruitment of additional cells was prevented by the addition of the fusion inhibitor T-20, indicating that a population of syncytia may progress into the cell cycle. These results show that the quantitative analysis of cellular outcomes of cell-cell fusion can be performed by flow cytometry.


Subject(s)
Cell Cycle/genetics , Cell Proliferation/genetics , Flow Cytometry , Giant Cells/cytology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/virology , Cell Fusion , Coculture Techniques , DNA/biosynthesis , Giant Cells/metabolism , HIV-1/metabolism , Humans , In Vitro Techniques , Jurkat Cells/metabolism , Jurkat Cells/virology , Viral Envelope Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...