Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Ther Med ; 17(5): 3351-3360, 2019 May.
Article in English | MEDLINE | ID: mdl-30988711

ABSTRACT

Osteoarthritis (OA) is a major public health problem characterized by joint pain, fatigue, functional limitation and decreased quality of life of the patient, which results in increased use of healthcare services and high economical costs. A promising novel bioactive cell-free formulation (BIOF2) for cartilage regeneration has recently been tested in pre-clinical and clinical trials, and has demonstrated a success rate similar to that of total joint arthroplasty for the treatment of severe knee OA. The present study evaluated the efficacy of treatment with BIOF2, by including it within a conservative regimen of 'usual medical care' of knee OA, and whether its efficacy was affected in subgroups of patients presenting with comorbidities that exacerbate OA. A prospective, randomized, 2-arm parallel group phase III clinical trial was conducted, which included 105 patients in the 'usual medical care' group (paracetamol/NSAIDs and general care provided by the family physician) and 107 patients in the BIOF2 group (usual medical care + intra-articular BIOF2 application at 0, 1 and 2 months). Two aspects were evaluated at 0, 6 and 12 months: i) Minimal clinically important improvement (MCII), based on 30% improvement of pain from the baseline; and ii) the Patient Acceptable Symptom State (PASS), a questionnaire that determines patient well-being thresholds for articular pain and function. Adverse effects and regular NSAID use were registered. At 12 months, BIOF-2 treatment produced MCII in 70% of the patients and >50% achieved PASS. Excluding the patients with class 2 obesity or malalignment conditions (genu varum or genu valgum >20 degrees), the experimental treatment produced MCII and PASS in 100 and 92% of patients, respectively, compared with 25 and 8% in the group of usual medical care (P<0.001). No patient with malalignment and treatment with BIOF2 achieved PASS. Notably, there were no serious adverse effects. To conclude, BIOF2 is a safe therapeutic alternative that is easy to implement together with usual medical care for knee OA. Trial registration: Cuban Public Registry of Clinical Trials (RPCEC) Database RPCEC00000277. Retrospectively registered June, 2018.

2.
Eur J Med Res ; 23(1): 52, 2018 Oct 24.
Article in English | MEDLINE | ID: mdl-30355362

ABSTRACT

BACKGROUND: A promising novel cell-free bioactive formulation for articular cartilage regeneration, called BIOF2, has recently been tested in pre-clinical trials. The aim of the present study was to evaluate the efficacy and safety of BIOF2 for intra-articular application in patients with severe osteoarthritis of the knee. METHODS: A prospective, randomized, 3-arm, parallel group clinical trial was conducted. It included 24 patients with severe osteoarthritis of the knee (WOMAC score 65.9 ± 17). Before they entered the study, all the patients were under osteoarthritis control through the standard treatment with nonsteroidal anti-inflammatory drugs (NSAIDs), prescribed by their family physician. Patients were distributed into three groups of 8 patients each (intra-articular BIOF2, total joint arthroplasty, or conservative treatment with NSAIDs alone). The WOMAC score, RAPID3 score, and Rasmussen clinical score were evaluated before treatment and at months 3, 6, and 12. BIOF2 was applied at months 0, 3, and 6. Complete blood count and blood chemistry parameters were determined in the BIOF2 group before treatment, at 72 h, and at months 1, 3, 6, and 12. In addition, articular cartilage volume was evaluated (according to MRI) at the beginning of the study and at month 12. RESULTS: The NSAID group showed no improvement at follow-up. Arthroplasty and BIOF2 treatments showed significant improvement in all the scoring scales starting at month 3. There were no statistically significant differences between the BIOF2 group and the arthroplasty group at month 6 (WOMAC score: 19.3 ± 18 vs 4.3 ± 5; P = 0.24) or month 12 (WOMAC score: 15.6 ± 15 vs 15.7 ± 17; P = 1.0). Arthroplasty and BIOF2 were successful at month 12 (according to a WOMAC score: ≤ 16) in 75% of the patients and the daily use of NSAIDs was reduced, compared with the group treated exclusively with NSAIDs (RR = 0.33, 95% CI 0.12-0.87, P = 0.02. This result was the same for BIOF2 vs NSAIDs and arthroplasty vs NSAIDs). BIOF2 significantly increased the articular cartilage by 22% (26.1 ± 10 vs 31.9 ± 10 cm2, P < 0.001) and produced a significant reduction in serum lipids. BIOF2 was well tolerated, causing slight-to-moderate pain only upon application. CONCLUSIONS: The intra-articular application of the new bioactive cell-free formulation (BIOF2) was well tolerated and showed no significative differences with arthroplasty for the treatment of severe osteoarthritis of the knee. BIOF2 can regenerate articular cartilage and is an easily implemented alternative therapy for the treatment of osteoarthritis. Trial registration Cuban Public Registry of Clinical Trials (RPCEC) Database RPCEC00000250. Registered 08/15/2017-Retrospectively registered, http://rpcec.sld.cu/en/trials/RPCEC00000250-En .


Subject(s)
Cartilage, Articular/drug effects , Mesenchymal Stem Cells/chemistry , Osteoarthritis, Knee/drug therapy , Steroids/administration & dosage , Adult , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arthroplasty, Replacement, Knee , Blood Cell Count , Cartilage, Articular/growth & development , Cell-Free System/chemistry , Cell-Free System/metabolism , Chondrocytes/drug effects , Chondrogenesis/drug effects , Female , Humans , Injections, Intra-Articular , Male , Mesenchymal Stem Cells/metabolism , Middle Aged , Osteoarthritis, Knee/blood , Osteoarthritis, Knee/physiopathology , Osteoarthritis, Knee/surgery , Regeneration/drug effects , Steroids/pharmacology , Treatment Outcome
3.
Mol Med Rep ; 17(3): 3503-3510, 2018 03.
Article in English | MEDLINE | ID: mdl-29286152

ABSTRACT

Osteoarthritis (OA) is a chronic disorder of synovial joints, in which there is progressive softening and disintegration of the articular cartilage. OA is the most common form of arthritis, and is the primary cause of disability and impaired quality of life in the elderly. Despite considerable medical necessity, no treatment has yet been proven to act as a disease­modifying agent that may halt or reverse the structural progression of OA. The replacement of the joint with a prosthesis appears to be the best option in the advanced stages of the disease. A formulation (BIOF2) for cartilage regeneration has been recently developed. The present study evaluated the effects of BIOF2 on gene expression in human cell cultures, followed by efficacy trials in three OA animal models. Human synovial fluid cells that were exposed to the formulation exhibited increased transcription factor SOX­9 (SOX9; chondrogenic factor) expression, and decreased mimecan (mineralization inducer) and macrophage­stimulating protein receptor (osteoclastogenic factor) expression. The intra­articular application of BIOF2 in the animal models significantly increased cartilage thickness from 12 to 31% at 28 days, compared with articular cartilage treated with saline solution. The articular area and number of chondrocytes additionally increased significantly, maintaining an unaltered chondrocyte/mm2 proportion. Evaluation of the histological architecture additionally displayed a decrease in the grade of articular damage in the groups treated with BIOF2. In conclusion, BIOF2 has proven to be effective for treating OA in animal models, most likely due to SOX9 overexpression in articular cells.


Subject(s)
Cartilage, Articular/drug effects , Osteoarthritis/therapy , SOX9 Transcription Factor/metabolism , Synovial Fluid/cytology , Animals , Cartilage, Articular/pathology , Disease Models, Animal , Drug Compounding , Female , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Inbred BALB C , Middle Aged , Osteoarthritis/pathology , Papain/toxicity , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , SOX9 Transcription Factor/genetics , Synovial Fluid/drug effects , Synovial Fluid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...