Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38896333

ABSTRACT

PURPOSE: The insulin-like growth factor (IGF) system includes IGF-I, IGF-II insulin and their membrane receptors. IGF system also includes a family of proteins namely insulin-like growth factor-binding proteins (IGFBPs) composed for six major members (IGFBP-1 to IGFBP6), which capture, transport and prolonging half-life of IGFs. However, it has been described that IGFBPs can also have other functions. METHODS: IGFBP5 expression was inhibited by shRNAs, migration was analyzed by scratch-wound assays, invasion assays were performed by the Boyden chamber method, spheroids formation assays were performed on ultra-low attachment surfaces, expression and phosphorylation of proteins were analyzed by Western blot. RESULTS: IGFBP5 is a repressor of IGF-IR expression, but it is not a repressor of IR in MCF-7 breast cancer cells. In addition, IGFBP5 is a suppressor of migration and MMP-9 secretion induced by IGF-I and insulin, but it does not regulate invasion in MCF-7 cells. IGFBP5 also is a repressor of MCF-7 spheroids formation. However treatment with 340 nM rescues the inhibitory effect of IGFBP in the MCF-7 spheroids formation. CONCLUSION: IGFBP5 regulates IGF-IR expression, migration and MMP-9 secretion induced by IGF-I and/or insulin, and the spheroids formation in MCF-7 breast cancer cells.

2.
Mol Carcinog ; 63(7): 1319-1333, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38629425

ABSTRACT

Breast cancer is the most frequent neoplasia in developed countries and the leading cause of death in women worldwide. Epithelial-to-mesenchymal transition (EMT) is a cellular process through which epithelial cells decrease or lose their epithelial characteristics and gain mesenchymal properties. EMT mediates tumor progression, because tumor cells acquire the capacity to execute the multiple steps of invasion and metastasis. Benzo[a]pyrene (B[a]P) is an environmental organic pollutant generated during the burning of fossil fuels, wood, and other organic materials. B[a]P exposition increases the incidence of breast cancer, and induces migration and/or invasion in MDA-MB-231 and MCF-7 breast cancer cells. However, the role of B[a]P in the induction of an EMT process and metastasis of mammary carcinoma cells has not been studied in detail. In this study, we demonstrate that B[a]P induces an EMT process in MCF10A mammary non-tumorigenic epithelial cells. In addition, B[a]P promotes the formation of larger tumors in Balb/cJ mice inoculated with 4T1 cells than in untreated mice and treated with dimethyl sulfoxide (DMSO). B[a]P also increases the number of mice with metastasis to brain and the total number of brain metastatic nodules in Balb/cJ mice inoculated with 4T1 cells compared with untreated mice and treated with DMSO. In conclusion, B[a]P induces an EMT process in MCF10A cells and the growth of mammary tumors and metastasis to brain in Balb/cJ mice inoculated with 4T1 cells.


Subject(s)
Benzo(a)pyrene , Brain Neoplasms , Epithelial-Mesenchymal Transition , Mice, Inbred BALB C , Animals , Epithelial-Mesenchymal Transition/drug effects , Female , Benzo(a)pyrene/toxicity , Humans , Mice , Brain Neoplasms/secondary , Brain Neoplasms/pathology , Brain Neoplasms/chemically induced , Breast Neoplasms/pathology , Breast Neoplasms/chemically induced , Cell Line, Tumor , Cell Proliferation/drug effects
3.
Mol Cell Endocrinol ; 575: 111998, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37414130

ABSTRACT

Triple negative breast cancer (TNBC) is a subtype of breast tumor characterized for the absence of estrogen and progesterone receptors expression and low HER2/neu expression. Bisphenol A (BPA) is an endocrine disrupting chemical with estrogenic activity that has been associated with increasing rates of breast cancer. Moreover, BPA is a solid organic synthetic chemical employed in the manufacture of many consumer products, epoxy resins and polycarbonate plastics including baby bottles, containers for food and beverages, and the lining of beverage cans. The G-protein-coupled estrogen receptor (GPER) is activated by endogenous hormones and synthetic ligands, such as BPA. GPER is expressed in TNBC cells and its expression is associated with larger tumor size, metastasis and worse survival prognosis. In breast cancer cells, BPA induces activation of signal transduction pathways that mediates migration and invasion via GPER in human TNBC MDA-MB-231 cells. In this study, we demonstrate that BPA induces an increase of GPER expression and its translocation from cytosol to cytoplasmic membrane, metalloproteinase (MMP)-2 and MMP-9 secretion, migration and invasion in murine TNBC 4T1 cells. In a murine TNBC model "in vivo" using 4T1 cells, BPA induces the formation of mammary tumors with more weight and volume, and an increase in the number of mice with metastasis to lung and nodules in lung compared with tumors and metastasis to lung of untreated Balb/cJ mice. In conclusion, our findings demonstrate that BPA mediates the growth of mammary primary tumors and metastasis to lung in a murine model of breast cancer.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/metabolism , Disease Models, Animal , Receptors, Estrogen/metabolism , Signal Transduction , Receptors, G-Protein-Coupled/metabolism , Estrogens , Cell Line, Tumor
4.
Proteomes ; 11(2)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37092456

ABSTRACT

Cellular interactions within the bone marrow microenvironment modulate the properties of subsets of leukemic cells leading to the development of drug-resistant phenotypes. The intercellular transfer of proteins and organelles contributes to this process but the set of transferred proteins and their effects in the receiving cells remain unclear. This study aimed to detect the intercellular protein transfer from mouse bone marrow stromal cells (OP9 cell line) to human T-lymphoblasts (CCRF-CEM cell line) using nanoLC-MS/MS-based shotgun proteomics in a 3D co-culture system. After 24 h of co-culture, 1513 and 67 proteins from human and mouse origin, respectively, were identified in CCRF-CEM cells. The presence of mouse proteins in the human cell line, detected by analyzing the differences in amino acid sequences of orthologous peptides, was interpreted as the result of intercellular transfer. The transferred proteins might have contributed to the observed resistance to vincristine, methotrexate, and hydrogen peroxide in the co-cultured leukemic cells. Our results suggest that shotgun proteomic analyses of co-cultured cells from different species could be a simple option to get a preliminary survey of the proteins exchanged among interacting cells.

5.
J Membr Biol ; 256(1): 79-90, 2023 02.
Article in English | MEDLINE | ID: mdl-35751654

ABSTRACT

Caveolae are small plasma membrane invaginations constituted for membrane proteins namely caveolins and cytosolic proteins termed cavins, which can occupy up to 50% of the surface of mammalian cells. The caveolae have been involved with a variety of cellular processes including regulation of cellular signaling. Insulin is a hormone that mediates a variety of physiological processes through activation of insulin receptor (IR), which is a tyrosine kinase receptor expressed in all mammalian tissues. Insulin induces activation of signal transducers and activators of transcription (STAT) family members including STAT5. In this study, we demonstrate, for the first time, that insulin induces phosphorylation of STAT5 at tyrosine-694 (STAT5-Tyr(P)694), STAT5 nuclear accumulation and an increase in STAT5-DNA complex formation in MCF-7 breast cancer cells. Insulin also induces nuclear accumulation of STAT5-Tyr(P)694, caveolin-1, and IR in MCF-7 cells. STAT5 nuclear accumulation and the increase of STAT5-DNA complex formation require the integrity of caveolae and microtubule network. Moreover, insulin induces an increase and nuclear accumulation of STAT5-Tyr(P)694 in MDA-MB-231 breast cancer cells. In conclusion, results demonstrate that caveolae and microtubule network play an important role in STAT5-Tyr(P)694, STAT5 nuclear accumulation and STAT5-DNA complex formation induced by insulin in breast cancer cells.


Subject(s)
Breast Neoplasms , Caveolae , Animals , Humans , Female , Caveolae/metabolism , Insulin/pharmacology , Insulin/metabolism , MCF-7 Cells , STAT5 Transcription Factor/metabolism , Breast Neoplasms/metabolism , Caveolin 1/genetics , Caveolin 1/metabolism , Phosphorylation , Tyrosine/metabolism , DNA/metabolism , Mammals/metabolism
6.
Mol Biol Rep ; 50(1): 193-201, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36319786

ABSTRACT

PURPOSE: Breast cancer is the most common malignancy in developed countries and the main cause of deaths in women worldwide. Lactoferrin (Lf) is an iron-binding protein constituted for a single polypeptide chain that is folded into two symmetrical lobes that bind Fe2+ or Fe3+. Lf has the ability to reversibly bind Fe3+ and is found free of Fe3+ (Apo-Lf) or associated with Fe3+ (Holo-Lf) with a different three-dimensional conformation. However, the role of bovine Apo-Lf (Apo-BLf) and bovine Holo-Lf (Holo-BLf) in the migration and invasion induced by linoleic acid (LA) and fetal bovine serum (FBS), as well as in the expression of mesenchymal and epithelial proteins in breast cancer cells has not been studied. METHODS AND RESULTS: Scratch wound assays demonstrated that Holo-BLf and Apo-BLf do not induce migration, however they differentially inhibit the migration induced by FBS and LA in breast cancer cells MDA-MB-231. Western blot, invasion, zymography and immunofluorescence confocal microscopy assays demonstrated that Holo-BLf partly inhibit the invasion, FAK phosphorylation at tyrosine (Tyr)-397 and MMP-9 secretion, whereas it increased the number and size of focal adhesions induced by FBS in MDA-MB-231 cells. Moreover, Holo-BLf induced a slight increase of E-cadherin expression in MCF-7 cells, and inhibited vimentin expression in MCF-7 and MDA-MB-231 breast cancer cells. CONCLUSION: Holo-BLf inhibits cellular processes that mediate the invasion process in breast cancer cells.


Subject(s)
Breast Neoplasms , Lactoferrin , Humans , Female , Lactoferrin/pharmacology , Lactoferrin/metabolism , Breast Neoplasms/metabolism , MCF-7 Cells , MDA-MB-231 Cells
7.
Tissue Cell ; 76: 101814, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35526310

ABSTRACT

Breast cancer is the most frequent malignancy among women in developed countries and the main cause of death related to cancer in women worldwide. Extracellular vesicles (EVs) are vesicles with a variable size enclosed within a phospholipid bilayer that contain a variety of molecules with biological activity. Cancer cells release EVs that induce proliferation, escape from apoptosis, reprogramming energy metabolism, invasion and metastasis. In this study we studied whether EV fractions deprived of platelet EVs from breast cancer women (BC EVs) can mediate cell processes related with angiogenesis in human umbilical vein endothelial cells (HUVECs). Our findings demonstrate that BC EVs enhance migration, invasion and formation of new tubules in HUVECs, compared with EV fractions deprived of platelet EVs from healthy women (Ctrl EVs). In summary, we demonstrate, for the first time, that BC EVs induce cellular processes in HUVECs that participate in angiogenesis.


Subject(s)
Breast Neoplasms , Extracellular Vesicles , Breast Neoplasms/pathology , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Female , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Neovascularization, Pathologic/pathology
8.
J Cell Commun Signal ; 16(4): 531-546, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34309795

ABSTRACT

Insulin-like growth factor-1 (IGF-1) plays an important role in function and development of the mammary gland. However, high levels of IGF-1 has been associated with an increased risk of breast cancer development. Epithelial-mesenchymal transition (EMT) is a process where epithelial cells lose their epithelial characteristics and acquire a mesenchymal phenotype, which is considered one of the most important mechanisms in cancer initiation and promotion of metastasis. Extracellular vesicles (EVs) are released into the extracellular space by different cell types, which mediate intercellular communication and play an important role in different physiological and pathological processes, such as cancer. In this study, we demonstrate that EVs from MDA-MB-231 breast cancer cells stimulated with IGF-1 (IGF-1 EVs) decrease the levels of E-cadherin, increase the expression of vimentin and N-cadherin and stimulate the secretion of metalloproteinase-9 in mammary non-tumorigenic epithelial cells MCF10A. IGF-1 EVs also induce the expression of Snail1, Twist1 and Sip1, which are transcription factors involved in EMT. Moreover, IGF-1 EVs induce activation of ERK1/2, Akt1 and Akt2, migration and invasion. In summary, we demonstrate, for the first time, that IGF-1 EVs induce an EMT process in mammary non-tumorigenic epithelial cells MCF10A.

9.
ACS Omega ; 6(38): 24338-24350, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34604617

ABSTRACT

A green method for synthesizing gold nanoparticles is proposed using hydroethanolic extract of Vitex mollis fruit (Vm extract) as a reducer and stabilizer. The formation of gold nanoparticles synthesized with Vm extract (AuVmNPs) was monitored by measuring the ultraviolet-visible spectra. The morphology and crystalline phase were determined using scanning electron microscopy, X-ray diffraction, and high-resolution transmission electron microscopy. Synthesized nanoparticles were generally spherical, and the size distribution obtained by transmission electron microscopy shows two populations with mean sizes of 12.5 and 22.5 nm. Cell viability assay using MTT and cellular apoptosis studies using annexin V on human umbilical vein endothelial cells (HUVECs) and the human mammary epithelial cell line (MCF10A) indicate that AuVmNPs have low toxicity. Cell migration tests indicate that AuVmNPs significantly inhibit HUVEC cell migration in a dose-dependent manner. The evaluation of the localization of AuVmNPs in HUVECs using confocal laser scanning microscopy indicates that nanoparticles penetrate cells and are found in the cytosol without preferential distribution and without entering the nucleus. The inhibitory effect on cellular migration and low toxicity suggest AuVmNPs as appropriate candidates in future studies of antiangiogenic activity.

10.
Chem Res Toxicol ; 34(7): 1738-1748, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34142820

ABSTRACT

Cutaneous drug-induced reactions are immune-mediated responses that can lead to life-threatening diseases such as drug reaction with eosinophilia and systemic symptoms (DRESS), Stevens-Johnson syndrome, and toxic epidermal necrolysis, collectively known as severe cutaneous adverse reactions (SCARs). Unfortunately, they cannot be predicted during drug development, and, at present, a prognostic biomarker is not available nor are validated in vitro assays for diagnosis. Thus, by using proteomic and microarray miRNA analysis, the cargo of extracellular vesicles obtained from SCARs patients was analyzed and correlated with the severity of the reaction. Confirmatory assays using Western blot and qRT-PCR were performed to validate findings, and bioinformatic tools were used to establish the correlation between protein and miRNAs expression between groups. The proteomic analysis showed an increase in the amount of pro-inflammatory proteins, von Willebrand factor, and C-reactive protein and a decrease in anti-inflammatory and protective proteins in the SCARs group compared with the control group. Additionally, histone protein H2A was enriched in DRESS patients. APO1 and SERPINA4 proteins, highly increased in the control group but absent in the SCARs group, are the target of several overexpressed miRNAs, suggesting that the regulation of these proteins might involve gene silencing and protein repressing mechanisms in the severe patients. According with previous reports showing its presence in plasma and T-cells, microRNA miR-18 was upregulated in extracellular vesicles obtained from the most severe patients. Determination of the unique cargo associated with different disease conditions will help to understand the pathophysiology of these complex reactions and might help to develop novel biomarkers for life-threatening iatrogenic cutaneous disease.


Subject(s)
Drug Eruptions/genetics , Extracellular Vesicles/genetics , MicroRNAs/genetics , Drug Eruptions/diagnosis , Extracellular Vesicles/chemistry , Extracellular Vesicles/pathology , Humans , Proteome/analysis , Proteome/genetics , Proteomics , Transcriptome
11.
Med Oncol ; 38(4): 40, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33728516

ABSTRACT

Linoleic acid (LA) is the most abundant polyunsaturated fatty acid in occidental diets, which mediate a variety of processes in human breast cancer cells, including migration and invasion. Extracellular vesicles (EVs) are vesicles released from endosomes and plasma membrane that are composed of a variety of molecules, including proteins, nucleic acids and lipids. EVs from cancer cells promote processes related with cancer progression. In the present study, we demonstrate that treatment of MDA-MB-231 cells with EVs from MDA-MB-231 cells stimulated with LA (LA EVs) promote migration and invasion via Src activity. LA EVs induce activation of FAK via Src activity and of Src and Akt2. LA EVs also induce the assembly of focal adhesions and MMP-9 secretion. These findings demonstrate that LA EVs mediate an autocrine and/or paracrine Src/FAK signaling pathway to promote migration and invasion.


Subject(s)
Cell Movement/drug effects , Extracellular Vesicles/metabolism , Focal Adhesion Kinase 1/metabolism , Linoleic Acid/pharmacology , src-Family Kinases/metabolism , Cell Line, Tumor , Extracellular Vesicles/drug effects , Focal Adhesions/drug effects , Humans , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects
12.
Prostaglandins Other Lipid Mediat ; 153: 106519, 2021 04.
Article in English | MEDLINE | ID: mdl-33238201

ABSTRACT

Extracellular vesicles (EVs) are vesicles secreted by normal and malignant cells that are implicated in tumor progression. Linoleic acid (LA) is an essential polyunsaturated fatty acid that induces migration, invasion and an increase in phospholipase D activity in breast cancer cells. In this study, we determined whether stimulation of MDA-MB-231 breast cancer cells with LA induces the secretion of EVs, which can mediate cell processes related with angiogenesis in human umbilical vein endothelial cells (HUVECs). Our findings demonstrate that treatment of MDA-MB-231 cells with 90 µM LA for 48 h induce an increase in the number of EVs released. Moreover, EVs from MDA-MB-231 stimulated with 90 µM LA induce FAK and Src activation and migration via FAK and Src activity, whereas the secretion of these EVs is through FFAR1 and FFAR4 activation in HUVECs. The EVs from MDA-MB-231 cells treated with LA also increase proliferation, invasion, MMP-9 secretion, an increase of MMP-2 secretion and formation of new tubules in HUVECs. In summary, we demonstrate, for the first time, that treatment with LA induces the release of EVs from MDA-MB-231 cells that induce cellular processes involved with angiogenesis in HUVECs.


Subject(s)
Human Umbilical Vein Endothelial Cells , Breast Neoplasms , Humans , Linoleic Acid , Matrix Metalloproteinase 2
13.
Chem Biol Interact ; 331: 109284, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33035518

ABSTRACT

Glutathione S-transferases (GSTs) are a key enzyme superfamily involved in the detoxification and cytoprotection of a wide variety of xenobiotics, such as carcinogens, anticancer drugs, environmental toxicants, and endogenously produced free radicals. In the liver, the hGSTA1 isoenzyme is the most abundant and catalyzes the glutathione conjugation of a wide range of electrophiles and has been the principal GST responsible for xenobiotic detoxification. Given the critical role of this enzyme in several cellular processes, particularly cell detoxification, understanding the molecular mechanisms underlying the regulation of hGSTA1 expression is critical. Therefore, the aim of the present study was to investigate whether AHR is involved in the modulation of hGSTA1 gene expression and to characterize the molecular mechanism through which AHR exerts this regulation. Two xenobiotic response elements (XREs) were located at -602 bp and -1030 bp from the transcription start site at the hGSTA1 gene promoter. After treatment of HepG2 cells with beta-naphthoflavone (ß-NF), an AHR agonist, induction of hGSTA1 mRNA was observed. This effect was mediated by the recruitment of AHR to the hGSTA1 gene promoter and its transactivation, as indicated by the ChIP, EMSA and luciferase activity assays. The increase in hGSTA1 transcription regulated by AHR also resulted in enhanced levels of hGSTA1 protein and activity. Taken together, our data suggest that AHR ligands have the potential to modify xenobiotic and endobiotic metabolism mediated by hGSTA1, thereby altering the detoxification of xenobiotics, steroidogenesis and the efficacy of chemotherapeutic agents.


Subject(s)
Glutathione Transferase/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Base Sequence , Electrophoretic Mobility Shift Assay , Enzyme Inhibitors/pharmacology , Glutathione Transferase/genetics , Hep G2 Cells , Humans , Promoter Regions, Genetic , Receptors, Aryl Hydrocarbon/agonists , Transcription Initiation Site , Transcriptional Activation/drug effects , beta-Naphthoflavone/pharmacology
14.
Mol Med Rep ; 22(3): 1932-1948, 2020 09.
Article in English | MEDLINE | ID: mdl-32582965

ABSTRACT

Triple negative breast cancer (TNBC) is a breast cancer subtype associated with high rates of metastasis, heterogeneity, drug resistance and a poor prognosis. Extracellular vesicles (EVs) are vesicles of endosomal and plasma membrane origin, and are secreted by healthy and cancer cells. In cancer, EVs contribute to tumor progression by mediating escape from the immune system surveillance, and are involved in extracellular matrix degradation, invasion, angiogenesis, migration and metastasis. Furthermore, EVs have been identified in several human fluids. However, the role of EVs from patients with breast cancer in the migration and invasion of human breast cancer cells is not fully understood. The present study investigated whether EVs isolated from Mexican patients with breast cancer can induce cellular processes related to invasion in breast cancer. Moreover, plasma fractions enriched in EVs and deprived of platelet­derived EVs obtained from blood samples of 32 Mexican patients with biopsy­diagnosed breast cancer at different clinical stages who had not received treatment were analyzed. Furthermore, one control group was included, which consisted of 20 Mexican healthy females. The present results demonstrated that EVs from women with breast cancer promote migration and invasion, and increase matrix metalloproteinase (MMP)­2 and MMP­9 secretion in TNBC MDA­MB­231 cells. In addition, it was found that EVs from patients with breast cancer induced Src and focal adhesion kinase activation, and focal adhesions assembly with an increase in focal adhesions number, while the migration and invasion was dependent on Src activity. Collectively, EVs from Mexican patients with breast cancer induce migration and invasion via a Src­dependent pathway in TNBC MDA­MB­231 cells.


Subject(s)
Extracellular Vesicles/metabolism , Signal Transduction , Triple Negative Breast Neoplasms/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Cell Movement , Epithelial-Mesenchymal Transition , Female , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Mexico , Middle Aged , Neoplasm Invasiveness , Neoplasm Staging , Triple Negative Breast Neoplasms/blood , Triple Negative Breast Neoplasms/metabolism , Young Adult , src-Family Kinases/metabolism
15.
J Alzheimers Dis ; 76(2): 553-569, 2020.
Article in English | MEDLINE | ID: mdl-32538846

ABSTRACT

BACKGROUND: Neurofibrillary tangles (NFTs) and amyloid plaques are the neuropathological hallmarks in brains with Alzheimer's disease (AD). Post-translational modifications of tau, such as phosphorylation and truncation, have been proposed as initiators in the assembly of the abnormal paired helical filaments that constitute the NFTs. Neurons and NFTs are sites of matrix metalloproteinases (MMPs). OBJECTIVE: The aim of this study was to analyze the relationship of MMP-9 and tau protein in brain samples with AD. METHODS: This study was performed on brain tissue samples from patients with early, moderate, and late AD. MMPs and tau levels were analyzed by western blot and gelatin-substrate zymography. Immunofluorescence techniques and confocal microscopy were used to analyze the presence of both proteins in NFTs. Further, molecular dynamics simulations (MDS) and protein-protein docking were conducted to predict interaction between MMP-9 and tau protein. RESULTS: MMP-9 expression was greatest in moderate and late AD, whereas MMP-2 expression was only increased in late-stage AD. Interestingly, confocal microscopy revealed NFTs in which there was co-localization of MMP-9 and tau protein. MDS and protein-protein docking predictions indicate that a high-affinity complex can be formed between MMP-9 and full-length tau protein. CONCLUSION: These observations provide preliminary evidence of an interaction between these two proteins. Post-translational modifications of tau protein, such as C-terminal truncation or phosphorylation of amino acid residues in the MMP-9 recognition site and conformational changes in the protein, such as folding of the N-terminal sequence over the three-repeat domain, could preclude the interaction between MMP-9 and tau protein during stages of NFT development.


Subject(s)
Alzheimer Disease/metabolism , Entorhinal Cortex/metabolism , Matrix Metalloproteinase 9/biosynthesis , tau Proteins/biosynthesis , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Entorhinal Cortex/pathology , Female , Humans , Male , Matrix Metalloproteinase 9/chemistry , Middle Aged , Molecular Docking Simulation , Protein Binding/physiology , Protein Structure, Secondary , tau Proteins/chemistry
16.
Toxicol In Vitro ; 66: 104871, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32325111

ABSTRACT

Bisphenol A (BPA) is an industrial synthetic chemical used in the production of polycarbonate plastics and epoxy resins. Human exposition to BPA is primarily through eating food, and drinking liquids, because BPA can leach from polycarbonate plastic containers, beverage cans and epoxy resins. BPA induces proliferation and migration in human breast cancer cells. The G protein-coupled estrogen receptor (GPER) is a G protein-coupled receptor coupled with Gs proteins that is activated by estrogen and estrogenic compounds and it is the receptor for BPA. However, the signal transduction pathways that mediate migration via BPA/GPER in triple negative breast cancer (TNBC) cells has not been studied in detail. Here, we demonstrate that BPA induces an increase of GPER expression and activation of FAK, Src and ERK2, and an increase of focal adhesion assembly via GPER in TNBC MDA-MB-231 cells. Moreover, BPA induces FAK and ERK2 activation, focal adhesion assembly and migration via epidermal growth factor receptor (EGFR) transactivation. Collectively our data showed that BPA via GPER and/or EGFR transactivation induces activation of signal transduction pathways that mediate migration in TNBC MDA-MB-231 cells.


Subject(s)
Benzhydryl Compounds/toxicity , Focal Adhesions/drug effects , Phenols/toxicity , Plasticizers/toxicity , Protein-Tyrosine Kinases/metabolism , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Humans , Receptors, Estrogen/genetics , Receptors, G-Protein-Coupled/genetics
17.
Mol Cell Biochem ; 457(1-2): 119-132, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30877512

ABSTRACT

Linoleic acid (LA) is an essential and omega-6 polyunsaturated fatty acid that mediates a variety of biological processes, including migration and invasion in breast cancer cells. Phospholipase D (PLD) catalyses the hydrolysis of phosphatidylcholine to produce phosphatidic acid and choline. Increases of expression and activity of PLD are reported in several human cancers, including gastric, colorectal, renal, stomach, lung and breast. In this article, we demonstrate that LA induces an increase of PLD activity in MDA-MB-231 breast cancer cells. Particularly, PLD1 and/or PLD2 mediate migration and invasion induced by LA. Moreover, LA induces increases in number and size of spheroids via PLD activity. FFAR1 also mediates migration and invasion, whereas PLD activation induced by LA requires the activities of FFAR1, FFAR4 and EGFR in MDA-MB-231 cells. In summary, PLD plays a pivotal role in migration and invasion induced by LA in MDA-MB-231 breast cancer cells.


Subject(s)
Breast Neoplasms/enzymology , Cell Movement/drug effects , Linoleic Acid/pharmacology , Neoplasm Proteins/metabolism , Phospholipase D/metabolism , Breast Neoplasms/pathology , Female , Humans , MCF-7 Cells , Neoplasm Invasiveness
18.
Endocr Connect ; 8(3): 252-265, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30721135

ABSTRACT

Free fatty acids (FFAs) are an energy source, and induce activation of signal transduction pathways that mediate several biological processes. In breast cancer cells, oleic acid (OA) induces proliferation, matrix metalloproteinase-9 (MMP-9) secretion, migration and invasion. However, the signal transduction pathways that mediate migration and invasion induced by OA in breast cancer cells have not been studied in detail. We demonstrate here that FFAR1 and FFAR4 mediate migration induced by OA in MDA-MB-231 and MCF-7 breast cancer cells. Moreover, OA induces migration, invasion, AKT1 and AKT2 activation, 12-LOX secretion and an increase of NFκB-DNA binding activity in breast cancer cells. Cell migration requires FFAR1, FFAR4, EGFR, AKT and PI3K activity, whereas invasion is mediated though a PI3K/Akt-dependent pathway. Furthermore, OA promotes relocalization of paxillin to focal contacts and it requires PI3K and EGFR activity, whereas NFκB-DNA binding activity requires PI3K and AKT activity.

19.
J Cell Commun Signal ; 13(2): 235-244, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30361980

ABSTRACT

In breast cancer cells, the linoleic acid (LA), an ω-6 essential polyunsaturated fatty acid, induces a variety of biological processes, including migration and invasion. Extracellular vesicles (EVs) are structures released by normal and malignant cells into extracellular space, and their function is dependent on their cargo and the cell type from which are secreted. Particularly, the EVs from MDA-MB-231 breast cancer cells treated with LA promote an epithelial-mesenchymal-transition (EMT)-like process in mammary non-tumorigenic epithelial cells MCF10A. Here, we found that EVs isolated from supernatants of MDA-MB-231 breast cancer cells stimulated with 90 µM LA induces activation of Akt2, FAK and ERK1/2 in MCF10A cells. In addition, EVs induces migration through a PI3K, Akt and ERK1/2-dependent pathway, whereas invasion is dependent on PI3K activity.

20.
Sci Rep ; 8(1): 12995, 2018 08 29.
Article in English | MEDLINE | ID: mdl-30158710

ABSTRACT

Voltage-gated sodium (NaV) channels have been related with cell migration and invasiveness in human cancers. We previously reported the contribution of NaV1.6 channels activity with the invasion capacity of cervical cancer (CeCa) positive to Human Papilloma Virus type 16 (HPV16), which accounts for 50% of all CeCa cases. Here, we show that NaV1.6 gene (SCN8A) overexpression is a general characteristic of CeCa, regardless of the HPV type. In contrast, no differences were observed in NaV1.6 channel expression between samples of non-cancerous and cervical intraepithelial neoplasia. Additionally, we found that CeCa cell lines, C33A, SiHa, CaSki and HeLa, express mainly the splice variant of SCN8A that lacks exon 18, shown to encode for an intracellularly localized NaV1.6 channel, whereas the full-length adult form was present in CeCa biopsies. Correlatively, patch-clamp experiments showed no evidence of whole-cell sodium currents (INa) in CeCa cell lines. Heterologous expression of full-length NaV1.6 isoform in C33A cells produced INa, which were sufficient to significantly increase invasion capacity and matrix metalloproteinase type 2 (MMP-2) activity. These data suggest that upregulation of NaV1.6 channel expression occurs when cervical epithelium have been transformed into cancer cells, and that NaV1.6-mediated invasiveness of CeCa cells involves MMP-2 activity. Thus, our findings support the notion about using NaV channels as therapeutic targets against cancer metastasis.


Subject(s)
Human papillomavirus 16/isolation & purification , Matrix Metalloproteinase 2/metabolism , NAV1.6 Voltage-Gated Sodium Channel/metabolism , Neoplasm Invasiveness , Uterine Cervical Neoplasms/physiopathology , Cell Line, Tumor , Female , Gene Expression Profiling , Humans , Matrix Metalloproteinase 2/genetics , NAV1.6 Voltage-Gated Sodium Channel/genetics , Patch-Clamp Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...