Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Genet Evol ; 51: 245-254, 2017 07.
Article in English | MEDLINE | ID: mdl-28408285

ABSTRACT

The epigenetic landscape illustrates how cells differentiate through the control of gene regulatory networks. Numerous studies have investigated epigenetic gene regulation but there are limited studies on how the epigenetic landscape and the presence of pathogens influence the evolution of host traits. Here, we formulate a multistable decision-switch model involving several phenotypes with the antagonistic influence of parasitism. As expected, pathogens can drive dominant (common) phenotypes to become inferior through negative frequency-dependent selection. Furthermore, novel predictions of our model show that parasitism can steer the dynamics of phenotype specification from multistable equilibrium convergence to oscillations. This oscillatory behavior could explain pathogen-mediated epimutations and excessive phenotypic plasticity. The Red Queen dynamics also occur in certain parameter space of the model, which demonstrates winnerless cyclic phenotype-switching in hosts and in pathogens. The results of our simulations elucidate the association between the epigenetic and phenotypic fitness landscapes and how parasitism facilitates non-genetic phenotypic diversity.


Subject(s)
Epigenesis, Genetic , Eukaryotic Cells/parasitology , Gene Regulatory Networks , Host-Parasite Interactions , Models, Genetic , Phenotype , Animals , Biological Evolution , Cell Lineage , Computer Simulation , Eukaryotic Cells/metabolism , Quantitative Trait, Heritable , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...