Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ArXiv ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38711430

ABSTRACT

Alzheimer's disease is the most common dementia worldwide. Its pathological development is well known to be connected with the accumulation of two toxic proteins: tau protein and amyloid-$\beta$. Mathematical models and numerical simulations can predict the spreading patterns of misfolded proteins in this context. However, the calibration of the model parameters plays a crucial role in the final solution. In this work, we perform a sensitivity analysis of heterodimer and Fisher-Kolmogorov models to evaluate the impact of the equilibrium values of protein concentration on the solution patterns. We adopt advanced numerical methods such as the IMEX-DG method to accurately describe the propagating fronts in the propagation phenomena in a polygonal mesh of sagittal patient-specific brain geometry derived from magnetic resonance images. We calibrate the model parameters using biological measurements in the brain cortex for the tau protein and the amyloid-$\beta$ in Alzheimer's patients and controls. Finally, using the sensitivity analysis results, we discuss the applicability of both models in the correct simulation of the spreading of the two proteins.

2.
ArXiv ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37205265

ABSTRACT

The Fisher-Kolmogorov equation is a diffusion-reaction PDE that is used to model the accumulation of prionic proteins, which are responsible for many different neurological disorders. Likely, the most important and studied misfolded protein in literature is the Amyloid-$\beta$, responsible for the onset of Alzheimer disease. Starting from medical images we construct a reduced-order model based on a graph brain connectome. The reaction coefficient of the proteins is modelled as a stochastic random field, taking into account all the many different underlying physical processes, which can hardly be measured. Its probability distribution is inferred by means of the Monte Carlo Markov Chain method applied to clinical data. The resulting model is patient-specific and can be employed for predicting the disease's future development. Forward uncertainty quantification techniques (Monte Carlo and sparse grid stochastic collocation) are applied with the aim of quantifying the impact of the variability of the reaction coefficient on the progression of protein accumulation within the next 20 years.

3.
Comput Biol Med ; 150: 106143, 2022 11.
Article in English | MEDLINE | ID: mdl-36182758

ABSTRACT

We analyse the haemodynamics of the left atrium, highlighting differences between healthy individuals and patients affected by atrial fibrillation. The computational study is based on patient-specific geometries of the left atria to simulate blood flow dynamics. We design a novel procedure to compute the boundary data for the 3D haemodynamic simulations, which are particularly useful in absence of data from clinical measurements. With this aim, we introduce a parametric definition of atrial displacement, and we use a closed-loop lumped parameter model of the whole cardiovascular circulation conveniently tuned on the basis of the patient's characteristics. We evaluate several fluid dynamics indicators for atrial haemodynamics, validating our numerical results in terms of clinical measurements; we investigate the impact of geometric and clinical characteristics on the risk of thrombosis. To highlight the correlation of thrombus formation with atrial fibrillation, according to medical evidence, we propose a novel indicator: age stasis. It arises from the combination of Eulerian and Lagrangian quantities. This indicator identifies regions where slow flow cannot properly rinse the chamber, accumulating stale blood particles, and creating optimal conditions for clots formation.


Subject(s)
Atrial Appendage , Atrial Fibrillation , Thrombosis , Humans , Hydrodynamics , Heart Atria/diagnostic imaging , Hemodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...