Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biomed Mater Eng ; 18(1 Suppl): S33-45, 2008.
Article in English | MEDLINE | ID: mdl-18334722

ABSTRACT

Articular cartilage has a limited capacity for self-repair after trauma. Besides the conventional surgical techniques for repairing such defects, treatments involve implantation of autologous cells in suspension or within a variety of cell carrying scaffolds such as hyaluronic acid, alginate, agarose/alginate, fibrin or collagen. For the repair of full-thickness osteochondral defects, tissue engineers started to design single- or bi-phased scaffold constructs often containing hydroxyapatite-collagen composites, usually used as a bone substitute. The purpose of this study was to compare the behavior of bovine chondrocytes cultured in collagen-based scaffolds containing or not hydroxyapatite and cross-linked following two different methods. Calf chondrocytes seeded within Hemotèse and Collapat II sponges (SYMATESE biomaterials), chemically cross-linked with glutaraldehyde or EDC/NHS, were maintained up to one month in culture. The cells exhibited a similar behavior in the four scaffolds regarding proliferation level, deposition of glycosaminoglycans in the scaffolds and gene expression of types I, II and X collagens, aggrecan, MMP-1, -13 and the integrin subunits alpha10 and alpha11.


Subject(s)
Biocompatible Materials/chemistry , Cartilage, Articular/growth & development , Chondrocytes/transplantation , Collagen/chemistry , Fractures, Cartilage/pathology , Fractures, Cartilage/surgery , Tissue Engineering/trends , Animals , Cartilage, Articular/cytology , Chondrogenesis/physiology , Humans
2.
Osteoarthritis Cartilage ; 14(7): 631-40, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16527498

ABSTRACT

OBJECTIVE: To determine the best protocol for the preparation of a tissue-engineered cartilage to investigate the potential anti-arthritic and/or anti-osteoarthritic effects of drugs. METHODS: Calf articular chondrocytes, seeded in collagen sponges were grown in culture for up to 1 month. At day 14 cultures received interleukin (IL)-1beta (ranging from 0.1 to 20 ng/ml) for 1 to 3 days. Analyses of gene expression for extracellular matrix proteins, collagen-binding integrins, matrix metalloproteinases (MMPs), aggrecanases, TIMPs, IL-1Ra and Ikappa-Balpha were carried out using real-time polymerase chain reaction (PCR). Metalloproteinase activities were analysed in the culture medium using both zymography and fluorogenic peptide substrates. RESULTS: We selected a culture for 15 or 17 days with collagen sponges seeded with 10(7) chondrocytes showing a minimal cell proliferation, a maximal sulphated glycosaminoglycan (sGAG) deposition and a high expression of COL2A1, aggrecan and the alpha10 integrin sub-unit and low expression of COL1A2 and the alpha11 integrin sub-unit. In the presence of 1 ng/ml IL-1beta, we observed at day 15 up-regulations of 450-fold for MMP-1, 60-fold for MMP-13, 54-fold for ADAMTS-4 and MMP-3 and 10-fold for ADAMTS-5 and IL-1Ra. Down-regulations of 2.5-fold for COL2A1 and aggrecan were observed only at day 17. At the protein level a dose-dependent increase of total MMP-1 and MMP-13 was noted with less than 15% in the active form. CONCLUSIONS: This in vitro model of chondrocyte culture in three dimensional (3D) seems well adapted to investigate the responses of these cells to inflammatory cytokines and to evaluate the potential anti-inflammatory effects of drugs.


Subject(s)
Cartilage, Articular/drug effects , Chondrocytes/drug effects , Interleukin-1/pharmacology , Tissue Engineering/methods , ADAM Proteins/biosynthesis , Aggrecans/metabolism , Animals , Cattle , Collagen/metabolism , Integrins/metabolism , Matrix Metalloproteinases/biosynthesis , Osteoarthritis/drug therapy , Tissue Inhibitor of Metalloproteinases/metabolism
3.
Biomaterials ; 25(4): 687-97, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14607507

ABSTRACT

Interest in chemical and physical modifications of culture conditions and composition, as a way to improve engineered cartilage, has grown over the last decade. To address some of these aspects, articular bovine chondrocytes seeded in collagen sponges (2.3x10(6) cells/cm(3), whose growth and metabolism have been previously reported) were grown under static or stirred conditions (orbital shaker at 30 rpm), in either 10% FCS-supplemented or serum-free media (1% ITS+1mM cysteine). Under stirred conditions, we observed a 2-fold increase in both cell proliferation and sulphated glycosaminoglycan deposition after 1 month of culture, compared to static conditions, and after 3 months, a more homogeneous distribution of both cells and neomatrix in the constructs. During the first month of culture, the substitution of FCS by ITS led to low cell proliferation and poor neomatrix deposition but, after 2 months a steep increase was observed with ITS for these two parameters that reached, after 3 months the levels observed with FCS. Aggrecan was the more abundant component at both gene and protein levels, whereas the collagenous network formed was looser than with FCS. In conclusion, the use of these simple culture conditions should improve, in long-term culture, the quality of the cartilage construct.


Subject(s)
Cartilage, Articular/cytology , Cartilage, Articular/physiology , Chondrocytes/cytology , Chondrocytes/physiology , Collagen/chemistry , Culture Media/metabolism , Extracellular Matrix Proteins/metabolism , Tissue Engineering/methods , Animals , Cattle , Cell Differentiation/physiology , Cell Division/physiology , Cells, Cultured , Culture Media, Serum-Free/metabolism , Materials Testing , Motion
SELECTION OF CITATIONS
SEARCH DETAIL