Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 33(12): 2367-2382.e7, 2023 06 19.
Article in English | MEDLINE | ID: mdl-37209680

ABSTRACT

The African malaria mosquito Anopheles gambiae exhibits a strong innate drive to seek out humans in its sensory environment, classically entering homes to land on human skin in the hours flanking midnight. To gain insight into the role that olfactory cues emanating from the human body play in generating this epidemiologically important behavior, we developed a large-scale multi-choice preference assay in Zambia with infrared motion vision under semi-field conditions. We determined that An. gambiae prefers to land on arrayed visual targets warmed to human skin temperature during the nighttime when they are baited with carbon dioxide (CO2) emissions reflective of a large human over background air, body odor from one human over CO2, and the scent of one sleeping human over another. Applying integrative whole body volatilomics to multiple humans tested simultaneously in competition in a six-choice assay, we reveal high attractiveness is associated with whole body odor profiles from humans with increased relative abundances of the volatile carboxylic acids butyric acid, isobutryic acid, and isovaleric acid, and the skin microbe-generated methyl ketone acetoin. Conversely, those least preferred had whole body odor that was depleted of carboxylic acids among other compounds and enriched with the monoterpenoid eucalyptol. Across expansive spatial scales, heated targets without CO2 or whole body odor were minimally or not attractive at all to An. gambiae. These results indicate that human scent acts critically to guide thermotaxis and host selection by this prolific malaria vector as it navigates towards humans, yielding intrinsic heterogeneity in human biting risk.


Subject(s)
Anopheles , Malaria , Taxis Response , Animals , Humans , Odorants , Body Odor , Carbon Dioxide , Mosquito Vectors , Pheromones, Human , Carboxylic Acids
2.
Curr Biol ; 31(22): 4983-4997.e5, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34619095

ABSTRACT

The geometric complexity and stereotypy of spider webs have long generated interest in their algorithmic origin. Like other examples of animal architecture, web construction is the result of several assembly phases that are driven by distinct behavioral stages coordinated to build a successful structure. Manual observations have revealed a range of sensory cues and movement patterns used during web construction, but methods to systematically quantify the dynamics of these sensorimotor patterns are lacking. Here, we apply an analytical pipeline to quantify web-making behavior of the orb-weaver Uloborus diversus. Position tracking revealed stereotyped stages of construction that could occur in typical or atypical progressions across individuals. Using an unsupervised clustering approach, we identified general and stage-specific leg movements. A hierarchical hidden Markov model revealed that web-building stages are characterized by stereotyped sequences of actions largely shared across individuals, regardless of whether these stages progress in a typical or an atypical fashion. Web stages could be predicted based on action sequences alone, revealing that web-stage geometries are a physical manifestation of behavioral transition regimes.


Subject(s)
Spiders , Animals , Predatory Behavior
3.
Neuron ; 104(2): 322-337.e14, 2019 10 23.
Article in English | MEDLINE | ID: mdl-31564592

ABSTRACT

The fan-shaped body (FB) neuropil in the Drosophila brain central complex (CX) controls a variety of adult behaviors, including navigation and sleep. How neuronal processes are organized into precise layers and columns in the FB and how alterations in FB neural-circuit wiring affect animal behaviors are unknown. We report here that secreted semaphorin 2b (Sema-2b) acts through its transmembrane receptor Plexin B (PlexB) to locally attract neural processes to specific FB laminae. Aberrant Sema-2b/PlexB signaling leads to select disruptions in neural lamination, and these disruptions result in the formation of ectopic inhibitory connections between subsets of FB neurons. These structural alternations and connectivity defects are associated with changes in fly sleep and arousal, emphasizing the importance of lamination-mediated neural wiring in a central brain region critical for normal sleep behavior.


Subject(s)
Arousal/physiology , Brain/metabolism , Drosophila Proteins/metabolism , Nerve Tissue Proteins/metabolism , Receptors, Cell Surface/metabolism , Semaphorins/metabolism , Sleep/physiology , Animals , Brain/growth & development , Drosophila , Larva , Neural Inhibition , Neural Pathways , Neuropil/cytology , Neuropil/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...