Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Microbiol ; 9(6): 1454-1466, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38806673

ABSTRACT

With rising global temperatures, permafrost carbon stores are vulnerable to microbial degradation. The enzyme latch theory states that polyphenols should accumulate in saturated peatlands due to diminished phenol oxidase activity, inhibiting resident microbes and promoting carbon stabilization. Pairing microbiome and geochemical measurements along a permafrost thaw-induced saturation gradient in Stordalen Mire, a model Arctic peatland, we confirmed a negative relationship between phenol oxidase expression and saturation but failed to support other trends predicted by the enzyme latch. To inventory alternative polyphenol removal strategies, we built CAMPER, a gene annotation tool leveraging polyphenol enzyme knowledge gleaned across microbial ecosystems. Applying CAMPER to genome-resolved metatranscriptomes, we identified genes for diverse polyphenol-active enzymes expressed by various microbial lineages under a range of redox conditions. This shifts the paradigm that polyphenols stabilize carbon in saturated soils and highlights the need to consider both oxic and anoxic polyphenol metabolisms to understand carbon cycling in changing ecosystems.


Subject(s)
Carbon Cycle , Microbiota , Permafrost , Polyphenols , Soil Microbiology , Polyphenols/metabolism , Permafrost/microbiology , Bacteria/metabolism , Bacteria/genetics , Bacteria/enzymology , Bacteria/classification , Carbon/metabolism , Oxidation-Reduction , Arctic Regions , Monophenol Monooxygenase/metabolism , Monophenol Monooxygenase/genetics , Soil/chemistry , Ecosystem
2.
Front Microbiol ; 14: 1139213, 2023.
Article in English | MEDLINE | ID: mdl-37303779

ABSTRACT

Interactions between autotrophs and heterotrophs are central to carbon (C) exchange across trophic levels in essentially all ecosystems and metabolite exchange is a frequent mechanism for distributing C within spatially structured ecosystems. Yet, despite the importance of C exchange, the timescales at which fixed C is transferred in microbial communities is poorly understood. We employed a stable isotope tracer combined with spatially resolved isotope analysis to quantify photoautotrophic uptake of bicarbonate and track subsequent exchanges across a vertical depth gradient in a stratified microbial mat over a light-driven diel cycle. We observed that C mobility, both across the vertical strata and between taxa, was highest during periods of active photoautotrophy. Parallel experiments with 13C-labeled organic substrates (acetate and glucose) showed comparably less exchange of C within the mat. Metabolite analysis showed rapid incorporation of 13C into molecules that can both comprise a portion of the extracellular polymeric substances in the system and serve to transport C between photoautotrophs and heterotrophs. Stable isotope proteomic analysis revealed rapid C exchange between cyanobacterial and associated heterotrophic community members during the day with decreased exchange at night. We observed strong diel control on the spatial exchange of freshly fixed C within tightly interacting mat communities suggesting a rapid redistribution, both spatially and taxonomically, primarily during daylight periods.

3.
PLoS One ; 17(2): e0252743, 2022.
Article in English | MEDLINE | ID: mdl-35108267

ABSTRACT

The mechanisms controlling the extraordinarily slow carbon (C) mineralization rates characteristic of Sphagnum-rich peatlands ("bogs") are not fully understood, despite decades of research on this topic. Soluble phenolic compounds have been invoked as potentially significant contributors to bog peat recalcitrance due to their affinity to slow microbial metabolism and cell growth. Despite this potentially significant role, the effects of soluble phenolic compounds on bog peat C mineralization remain unclear. We analyzed this effect by manipulating the concentration of free soluble phenolics in anaerobic bog and fen peat incubations using water-soluble polyvinylpyrrolidone ("PVP"), a compound that binds with and inactivates phenolics, preventing phenolic-enzyme interactions. CO2 and CH4 production rates (end-products of anaerobic C mineralization) generally correlated positively with PVP concentration following Michaelis-Menten (M.M.) saturation functions. Using M.M. parameters, we estimated that the extent to which phenolics inhibit anaerobic CO2 production was significantly higher in the bog-62 ± 16%-than the fen-14 ± 4%. This difference was found to be more substantial with regards to methane production-wherein phenolic inhibition for the bog was estimated at 54 ± 19%, while the fen demonstrated no apparent inhibition. Consistent with this habitat difference, we observed significantly higher soluble phenolic content in bog vs. fen pore-water. Together, these findings suggest that soluble phenolics could contribute to bogs' extraordinary recalcitrance and high (relative to other peatland habitats) CO2:CH4 production ratios.


Subject(s)
Carbon/metabolism , Phenols/chemistry , Sphagnopsida/metabolism , Anaerobiosis , Carbon/chemistry , Carbon Dioxide/chemistry , Carbon Dioxide/metabolism , Kinetics , Methane/chemistry , Methane/metabolism , Permafrost , Povidone/chemistry , Sphagnopsida/chemistry
4.
mSystems ; 5(3)2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32518194

ABSTRACT

Increasing anthropogenic inputs of fixed nitrogen are leading to greater eutrophication of aquatic environments, but it is unclear how this impacts the flux and fate of carbon in lacustrine and riverine systems. Here, we present evidence that the form of nitrogen governs the partitioning of carbon among members in a genome-sequenced, model phototrophic biofilm of 20 members. Consumption of NO3 - as the sole nitrogen source unexpectedly resulted in more rapid transfer of carbon to heterotrophs than when NH4 + was also provided, suggesting alterations in the form of carbon exchanged. The form of nitrogen dramatically impacted net community nitrogen, but not carbon, uptake rates. Furthermore, this alteration in nitrogen form caused very large but focused alterations to community structure, strongly impacting the abundance of only two species within the biofilm and modestly impacting a third member species. Our data suggest that nitrogen metabolism may coordinate coupled carbon-nitrogen biogeochemical cycling in benthic biofilms and, potentially, in phototroph-heterotroph consortia more broadly. It further indicates that the form of nitrogen inputs may significantly impact the contribution of these communities to carbon partitioning across the terrestrial-aquatic interface.IMPORTANCE Anthropogenic inputs of nitrogen into aquatic ecosystems, and especially those of agricultural origin, involve a mix of chemical species. Although it is well-known in general that nitrogen eutrophication markedly influences the metabolism of aquatic phototrophic communities, relatively little is known regarding whether the specific chemical form of nitrogen inputs matter. Our data suggest that the nitrogen form alters the rate of nitrogen uptake significantly, whereas corresponding alterations in carbon uptake were minor. However, differences imposed by uptake of divergent nitrogen forms may result in alterations among phototroph-heterotroph interactions that rewire community metabolism. Furthermore, our data hint that availability of other nutrients (i.e., iron) might mediate the linkage between carbon and nitrogen cycling in these communities. Taken together, our data suggest that different nitrogen forms should be examined for divergent impacts on phototrophic communities in fluvial systems and that these anthropogenic nitrogen inputs may significantly differ in their ultimate biogeochemical impacts.

5.
FEMS Microbiol Ecol ; 93(10)2017 10 01.
Article in English | MEDLINE | ID: mdl-29045626

ABSTRACT

Benthic microbial ecosystems are widespread yet knowledge gaps still remain on the relationships between the diversity of species across kingdoms and productivity. Here, we ask two fundamental questions: (i) How does species diversity relate to the rates of primary and heterotrophic productivity? (ii) How do diel variations in light-energy inputs influence productivity and microbiome diversity? To answer these questions, microbial mats from a magnesium sulfate hypersaline lake were used to establish microcosms. Both the number and relatedness between bacterial and eukaryotic taxa in the microbiome were assayed via amplicon-based sequencing of 16S and 18S rRNA genes over two diel cycles. These results correlated with biomass productivity obtained from substrate-specific 13C stable isotope tracers that enabled comparisons between primary and heterotrophic productivity. Both bacterial and eukaryotic species richness and evenness were related only to the rates of 13C-labeled glucose and acetate biomass incorporation. Interestingly, measures of these heterotrophic relationships changed from positive and negative correlations depending on carbon derived from glucose or acetate, respectively. The bacterial and eukaryotic diversity of this ecosystem is also controlled, in part, from energy constraints imposed by changing irradiance over a diel cycle.


Subject(s)
Bacteria/metabolism , Lakes/microbiology , Sodium Chloride/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Biomass , Carbon/analysis , Carbon/metabolism , Ecosystem , Lakes/chemistry , Microbiota , Sodium Chloride/analysis
6.
Environ Microbiol Rep ; 6(6): 786-91, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25155264

ABSTRACT

Microbial mats are characterized by extensive metabolic interactions, rapidly changing internal geochemical gradients, and prevalent microenvironments within tightly constrained physical structures. We present laser ablation isotope ratio mass spectrometry (LA-IRMS) as a culture-independent, spatially specific technology for tracking the accumulation of (13) C-labelled substrate into heterogeneous microbial mat communities. This study demonstrates the novel LA-IRMS approach by tracking labeled bicarbonate incorporation into a cyanobacteria-dominated microbial mat system. The spatial resolution of 50 µm was sufficient for distinguishing different mat strata and the approach effectively identified regions of greatest label incorporation. Sample preparation for LA-IRMS is straightforward and the spatial selectivity of LA-IRMS minimizes the volume of mat consumed, leaving material for complimentary analyses. We present analysis of DNA extracted from a sample post-ablation and suggest pigments, lipids or other biomarkers could similarly be extracted following ablation. LA-IRMS is well positioned to spatially resolve the accumulation of any (13) C-labelled substrate provided to a mat, making this a versatile tool for studying carbon transfer and interspecies exchanges within the limited spatial confines of such systems.


Subject(s)
Bicarbonates/metabolism , Cyanobacteria/chemistry , Cyanobacteria/metabolism , Mass Spectrometry/methods , Bicarbonates/chemistry , Carbon Isotopes/chemistry , Mass Spectrometry/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...