Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Blood Cancer Discov ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713018

ABSTRACT

Despite advances in understanding the genetic abnormalities in myeloproliferative neoplasms (MPNs) and the development of JAK2 inhibitors, there is an urgent need to devise new treatment strategies, particularly for triple negative myelofibrosis (MF) patients who lack mutations in the JAK2 kinase pathway and have very poor clinical outcomes. Here we report that MYC copy number gain and increased MYC expression frequently occur in triple negative MF, and that MYC-directed activation of S100A9, an alarmin protein that plays pivotal roles in inflammation and innate immunity, is necessary and sufficient to drive development and progression of MF. Notably, the MYC-S100A9 circuit provokes a complex network of inflammatory signaling that involves numerous hematopoietic cell types in the bone marrow microenvironment. Accordingly, genetic ablation of S100A9 or treatment with small molecules targeting the MYC-S100A9 pathway effectively ameliorates MF phenotypes, highlighting the MYC-alarmin axis as a novel therapeutic vulnerability for this subgroup of MPNs.

2.
Cell Death Differ ; 30(4): 1018-1032, 2023 04.
Article in English | MEDLINE | ID: mdl-36755068

ABSTRACT

The importance of c-MYC in regulating lymphopoiesis and promoting lymphomagenesis is well-established. Far less appreciated is the vital supporting role of MYC's relative MNT. Using Rag1Cre-mediated Mnt deletion in lymphoid progenitor cells, we show here that, during normal T cell development, MNT loss enhances apoptosis, at least in part by elevating expression of the pro-apoptotic BH3-only protein BIM. Moreover, using T lymphoma-prone VavP-MYC transgenic mice, we show that Mnt deletion reduces the pool of pre-malignant MYC-driven T lymphoid cells and abrogates thymic T lymphomagenesis. In addition, we establish that Mnt deletion prevents T lymphoma development in γ-irradiated mice, most likely by enhancing apoptosis of T lymphoid cells repopulating the depleted thymus. Taken together with our recent demonstration that MNT is vital for the survival of MYC-driven pre-malignant and malignant B lymphoid cells, these results suggest that MNT represents an important new drug target for both T and B lymphoid malignancies.


Subject(s)
Apoptosis , Lymphoma , Animals , Mice , Lymphocytes/metabolism , Lymphoma/genetics , Lymphoma/pathology , Mice, Transgenic , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , T-Lymphocytes/metabolism
3.
Dis Model Mech ; 15(5)2022 May 01.
Article in English | MEDLINE | ID: mdl-35662325

ABSTRACT

Prompted by the occasion of International Women's Day, Joan Heath and DMM reunited Professors Suzanne Cory and Joan Steitz via Zoom to discuss their extraordinary careers and joint experiences in science. They also delve into past and present challenges for women in science, and discuss the role of scientists in a post-pandemic world.

4.
Stem Cell Reports ; 16(11): 2784-2797, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34715054

ABSTRACT

Hematopoietic stem cells (HSCs) reside at the apex of the hematopoietic differentiation hierarchy and sustain multilineage hematopoiesis. Here, we show that the transcriptional regulator CITED2 is essential for life-long HSC maintenance. While hematopoietic-specific Cited2 deletion has a minor impact on steady-state hematopoiesis, Cited2-deficient HSCs are severely depleted in young mice and fail to expand upon aging. Moreover, although they home normally to the bone marrow, they fail to reconstitute hematopoiesis upon transplantation. Mechanistically, CITED2 is required for expression of key HSC regulators, including GATA2, MCL-1, and PTEN. Hematopoietic-specific expression of anti-apoptotic MCL-1 partially rescues the Cited2-deficient HSC pool and restores their reconstitution potential. To interrogate the Cited2→Pten pathway in HSCs, we generated Cited2;Pten compound heterozygous mice, which had a decreased number of HSCs that failed to reconstitute the HSC compartment. In addition, CITED2 represses multiple pathways whose elevated activity causes HSC exhaustion. Thus, CITED2 promotes pathways necessary for HSC maintenance and suppresses those detrimental to HSC integrity.


Subject(s)
Gene Expression Regulation , Hematopoiesis/genetics , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/metabolism , Repressor Proteins/genetics , Trans-Activators/genetics , Animals , Apoptosis/genetics , Cell Proliferation/genetics , Gene Regulatory Networks/genetics , Mice, Inbred C57BL , Mice, Knockout , RNA-Seq/methods , Repressor Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Time Factors , Trans-Activators/metabolism
5.
Blood ; 135(13): 1019-1031, 2020 03 26.
Article in English | MEDLINE | ID: mdl-31978211

ABSTRACT

Deregulated overexpression of MYC is implicated in the development and malignant progression of most (∼70%) human tumors. MYC drives cell growth and proliferation, but also, at high levels, promotes apoptosis. Here, we report that the proliferative capacity of MYC-driven normal and neoplastic B lymphoid cells depends on MNT, a MYC-related transcriptional repressor. Our genetic data establish that MNT synergizes with MYC by suppressing MYC-driven apoptosis, and that it does so primarily by reducing the level of pro-apoptotic BIM. In Eµ-Myc mice, which model the MYC/IGH chromosome translocation in Burkitt's lymphoma, homozygous Mnt deletion greatly reduced lymphoma incidence by enhancing apoptosis and markedly decreasing premalignant B lymphoid cell populations. Strikingly, by inducing Mnt deletion within transplanted fully malignant Eµ-Myc lymphoma cells, we significantly extended transplant recipient survival. The dependency of lymphomas on MNT for survival suggests that drugs inhibiting MNT could significantly boost therapy of MYC-driven tumors by enhancing intrinsic MYC-driven apoptosis.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Cell Transformation, Neoplastic/genetics , Lymphoma/genetics , Lymphoma/mortality , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/genetics , Animals , Antineoplastic Agents/therapeutic use , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Bone Marrow/metabolism , Bone Marrow/pathology , Cell Line, Tumor , Disease Models, Animal , Gene Deletion , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Lymphoma/drug therapy , Lymphoma/pathology , Lymphoma, B-Cell/genetics , Mice , Mice, Transgenic , Repressor Proteins/genetics , Xenograft Model Antitumor Assays
6.
Cell Death Differ ; 26(7): 1316-1331, 2019 07.
Article in English | MEDLINE | ID: mdl-30470795

ABSTRACT

Many acute myeloid leukaemias (AMLs) express high levels of BCL-2 and MCL-1, especially after therapy. To test the impact of these anti-apoptotic proteins on AML development and treatment, we used haemopoietic reconstitution to generate MLL-AF9 AMLs expressing BCL-2 or Mcl-1 transgenes. AMLs with elevated BCL-2 or MCL-1 had a higher proportion of mature myeloid cells but, like conventional MLL-AF9 AMLs, were readily transplantable. Short-term cell lines established from multiple primary AMLs of each genotype were tested in vitro for susceptibility to chemotherapeutics currently used for treating AML (daunorubicin, etoposide, cytarabine); the proteasome inhibitor bortezomib; CDK7/9 inhibitors; and BH3 mimetics, which bind and inhibit pro-survival proteins. The BH3 mimetics tested, alone and in combination with the other drugs, were: ABT-737 which, like its clinical counterpart navitoclax, targets BCL-2, BCL-XL and BCL-W; BCL-2-specific ABT-199 (venetoclax); BCL-XL-specific A-1331852; and S63845, a new MCL-1-specific BH3 mimetic. As single agents, daunorubicin and bortezomib had the greatest efficacy. Elevated MCL-1 or BCL-2 reduced sensitivity to daunorubicin but, surprisingly, not to bortezomib. MCL-1 markedly enhanced resistance to ABT-737 and ABT-199 but not S63845, and BCL-2 increased resistance to S63845 but not to ABT-737 or ABT-199. Notable synergies were achieved by combining BH3 mimetics with daunorubicin: S63845 increased the sensitivity of both MCL-1 and BCL-2 overexpressing MLL-AF9 AMLs, and ABT-737 aided in killing those overexpressing BCL-2. Synergy between daunorubicin and ABT-199 was also apparent in vivo, although not curative. Impressive synergistic responses were achieved for human MLL-fusion AML cell lines treated with daunorubicin plus either ABT-737, ABT-199 or S63845, and with ABT-199 plus S63845, with or without daunorubicin. Our data suggest that AML patients may benefit from combining conventional cytotoxic drugs with BH3 mimetics targeting BCL-2 or MCL-1 or, if tolerated, both these agents.


Subject(s)
Antineoplastic Agents/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Myeloid-Lymphoid Leukemia Protein/antagonists & inhibitors , Oncogene Proteins, Fusion/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Animals , Antineoplastic Agents/administration & dosage , Biphenyl Compounds/administration & dosage , Biphenyl Compounds/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Daunorubicin/administration & dosage , Daunorubicin/pharmacology , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm/drug effects , Drug Screening Assays, Antitumor , Humans , Injections, Intravenous , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred C57BL , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Myeloid-Lymphoid Leukemia Protein/metabolism , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Nitrophenols/administration & dosage , Nitrophenols/pharmacology , Oncogene Proteins, Fusion/metabolism , Piperazines/administration & dosage , Piperazines/pharmacology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Structure-Activity Relationship , Sulfonamides/administration & dosage , Sulfonamides/pharmacology , THP-1 Cells
7.
Proc Natl Acad Sci U S A ; 115(48): 12092-12094, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30446613
8.
FEBS J ; 285(8): 1403-1418, 2018 04.
Article in English | MEDLINE | ID: mdl-29498802

ABSTRACT

Overexpression of BCLX and BFL1/A1 has been reported in various human malignancies and is associated with poor prognosis and drug resistance, identifying these prosurvival BCL2 family members as putative drug targets. We have generated transgenic mice that express human BFL1 or human BCLX protein throughout the haematopoietic system under the control of the Vav gene promoter. Haematopoiesis is normal in both the Vav-BFL1 and Vav-BCLX transgenic (TG) mice and susceptibility to spontaneous haematopoietic malignancies is not increased. Lymphoid cells from Vav-BCLX TG mice exhibit increased resistance to apoptosis in vitro while most blood cell types form Vav-BFL1 TG mice were poorly protected. Both transgenes significantly accelerated lymphomagenesis in Eµ-MYC TG mice and, surprisingly, the Vav-BFL1 transgene was the more potent. Unexpectedly, expression of transgenic BFL1 RNA and protein is significantly elevated in B lymphoid cells of Vav-BFL1/Eµ-MYC double-transgenic compared to Vav-BFL1 mice, even during the preleukaemic phase, providing a rationale for the potent synergy. In contrast, Vav-BCLX expression was not notably different. These mouse models of BFL1 and BCLX overexpression in lymphomas should be useful tools for the testing the efficacy of novel human BFL1- and BCLX-specific inhibitors.


Subject(s)
Lymphocytes/metabolism , Lymphoma, B-Cell/genetics , Minor Histocompatibility Antigens/genetics , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-vav/genetics , bcl-X Protein/genetics , Animals , Apoptosis/genetics , Gene Expression Regulation , Hematopoiesis/genetics , Humans , Lymphoma, B-Cell/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Minor Histocompatibility Antigens/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Transgenes/genetics , bcl-X Protein/metabolism
9.
Cell Death Differ ; 25(4): 797-808, 2018 03.
Article in English | MEDLINE | ID: mdl-29339775

ABSTRACT

The transcription factor c-MYC regulates a multiplicity of genes involved in cellular growth, proliferation, metabolism and DNA damage response and its overexpression is a hallmark of many tumours. Since MYC promotes apoptosis under conditions of stress, such as limited availability of nutrients or cytokines, MYC-driven cells are very much dependent on signals that inhibit cell death. Stress signals trigger apoptosis via the pathway regulated by opposing fractions of the BCL-2 protein family and previous genetic studies have shown that the development of B lymphoid tumours in Eµ-Myc mice is critically dependent on expression of pro-survival BCL-2 relatives MCL-1, BCL-W and, to a lesser extent, BCL-XL, but not BCL-2 itself, and that sustained growth of these lymphomas is dependent on MCL-1. Using recently developed mice that lack expression of all three functional pro-survival A1 genes, we show here that the kinetics of lymphoma development in Eµ-Myc mice and the competitive repopulation capacity of Eµ-Myc haemopoietic stem and progenitor cells is unaffected by the absence of A1. However, conditional loss of a single remaining functional A1 gene from transplanted A1-a-/-A1-b fl/fl A1-c-/- Eµ-Myc lymphomas slowed their expansion, significantly extending the life of the transplant recipients. Thus, A1 contributes to the survival of malignant Eµ-Myc-driven B lymphoid cells. These results strengthen the case for BFL-1, the human homologue of A1, being a valid target for drug development for MYC-driven tumours.


Subject(s)
Lymphoma, B-Cell/metabolism , Minor Histocompatibility Antigens/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , Female , Humans , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/pathology , Male , Mice , Mice, Knockout , Minor Histocompatibility Antigens/genetics , Neoplasm Transplantation , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-myc/genetics
10.
Cell Death Differ ; 25(1): 27-36, 2018 01.
Article in English | MEDLINE | ID: mdl-29099483

ABSTRACT

Impaired apoptosis plays a central role in cancer development and limits the efficacy of conventional cytotoxic therapies. Deepening understanding of how opposing factions of the BCL-2 protein family switch on apoptosis and of their structures has driven development of a new class of cancer drugs that targets various pro-survival members by mimicking their natural inhibitors, the BH3-only proteins. These 'BH3 mimetic' drugs seem destined to become powerful new weapons in the arsenal against cancer. Successful clinical trials of venetoclax/ABT-199, a specific inhibitor of BCL-2, have led to its approval for a refractory form of chronic lymphocytic leukaemia and to scores of on-going trials for other malignancies. Furthermore, encouraging preclinical studies of BH3 mimetics that target other BCL-2 pro-survival members, particularly MCL-1, offer promise for cancers resistant to venetoclax. This review sketches the impact of the BCL-2 family on cancer development and therapy, describes how interactions of family members trigger apoptosis and discusses the potential of BH3 mimetic drugs to advance cancer therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Apoptosis , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/physiology , Animals , Apoptosis Regulatory Proteins/physiology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Humans , Mitochondrial Membranes/metabolism , Neoplasms/drug therapy , Proto-Oncogene Proteins c-bcl-2/chemistry , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/therapeutic use
11.
Cell Death Differ ; 24(12): 2117-2126, 2017 12.
Article in English | MEDLINE | ID: mdl-28800127

ABSTRACT

The transcriptional represser Mnt is a functional antagonist of the proto-oncoprotein Myc. Both Mnt and Myc utilise Max as an obligate partner for DNA binding, and Myc/Max and Mnt/Max complexes compete for occupancy at E-box DNA sequences in promoter regions. We have previously shown in transgenic mouse models that the phenotype and kinetics of onset of haemopoietic tumours varies with the level of Myc expression. We reasoned that a decrease in the level of Mnt would increase the functional level of Myc and accelerate Myc-driven tumorigenesis. We tested the impact of reduced Mnt in three models of myc transgenic mice and in p53+/- mice. To our surprise, mnt heterozygosity actually slowed Myc-driven tumorigenesis in vavP-MYC10 and Eµ-myc mice, suggesting that Mnt facilitates Myc-driven oncogenesis. To explore the underlying cause of the delay in tumour development, we enumerated Myc-driven cell populations in healthy young vavP-MYC10 and Eµ-myc mice, expecting that the reduced rate of leukaemogenesis in mnt heterozygous mice would be reflected in a reduced number of preleukaemic cells, due to increased apoptosis or reduced proliferation or both. However, no differences were apparent. Furthermore, when mnt+/+ and mnt+/- pre-B cells from healthy young Eµ-myc mice were compared in vitro, no differences were seen in their sensitivity to apoptosis or in cell size or cell cycling. Moreover, the frequencies of apoptotic, senescent and proliferating cells were comparable in vivo in mnt+/- and mnt+/+ Eµ-myc lymphomas. Thus, although mnt heterozygosity clearly slowed lymphomagenesis in vavP-MYC10 and Eµ-myc mice, the change(s) in cellular properties responsible for this effect remain to be identified.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Carcinogenesis/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proto-Oncogene Proteins c-myc/genetics , Repressor Proteins/genetics , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Carcinogenesis/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Proto-Oncogene Proteins c-myc/metabolism , Repressor Proteins/metabolism
12.
Cell Death Differ ; 24(5): 878-888, 2017 05.
Article in English | MEDLINE | ID: mdl-28362427

ABSTRACT

Survival of various immune cell populations has been proposed to preferentially rely on a particular anti-apoptotic BCL-2 family member, for example, naive T cells require BCL-2, while regulatory T cells require MCL-1. Here we examined the survival requirements of multiple immune cell subsets in vitro and in vivo, using both genetic and pharmacological approaches. Our findings support a model in which survival is determined by quantitative participation of multiple anti-apoptotic proteins rather than by a single anti-apoptotic protein. This model provides both an insight into how the sum of relative levels of anti-apoptotic proteins BCL-2, MCL-1 and A1 influence survival of T cells, B cells and dendritic cells, and a framework for ascertaining how these different immune cells can be optimally targeted in treatment of immunopathology, transplantation rejection or hematological cancers.


Subject(s)
Gene Expression Regulation/immunology , Minor Histocompatibility Antigens/genetics , Models, Immunological , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Animals , Antineoplastic Agents/pharmacology , B-Lymphocytes/cytology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Survival , Dendritic Cells/cytology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Flow Cytometry , Immunity, Innate , Immunophenotyping , Mice , Mice, Inbred C57BL , Mice, Transgenic , Minor Histocompatibility Antigens/immunology , Myeloid Cell Leukemia Sequence 1 Protein/immunology , Organ Specificity , Proto-Oncogene Proteins c-bcl-2/immunology , Signal Transduction , Sulfonamides/pharmacology
13.
Cell Death Differ ; 24(3): 397-408, 2017 03.
Article in English | MEDLINE | ID: mdl-27813531

ABSTRACT

Cell death by apoptosis has a critical role during embryonic development and in maintaining tissue homeostasis. In mammals, there are two converging apoptosis pathways: the 'extrinsic' pathway, which is triggered by engagement of cell surface 'death receptors' such as Fas/APO-1; and the 'intrinsic' pathway, which is triggered by diverse cellular stresses, and is regulated by pro-survival and pro-apoptotic members of the Bcl-2 family of proteins. Pro-survival Mcl-1, which can block activation of the pro-apoptotic proteins, Bax and Bak, appears critical for the survival and maintenance of multiple haemopoietic cell types. To investigate the impact on haemopoiesis of simultaneously inhibiting both apoptosis pathways, we introduced the vavP-Mcl-1 transgene, which causes overexpression of Mcl-1 protein in all haemopoietic lineages, into Faslpr/lpr mice, which lack functional Fas and are prone to autoimmunity. The combined mutations had a modest impact on myelopoiesis, primarily an increase in the macrophage/monocyte population in Mcl-1tg/lpr mice compared with lpr or Mcl-1tg mice. The impact on lymphopoiesis was striking, with a marked elevation in all major lymphoid subsets, including the non-conventional double-negative (DN) T cells (TCRß+CD4-CD8-B220+) characteristic of Faslpr/lpr mice. Of note, the onset of autoimmunity was markedly accelerated in Mcl-1tg/lpr mice compared with lpr mice, and this was preceded by an increase in immunoglobulin (Ig)-producing cells and circulating autoantibodies. This degree of impact was surprising, given the relatively mild phenotype conferred by the vavP-Mcl-1 transgene by itself: a two- to threefold elevation of peripheral B and T cells, no significant increase in the non-conventional DN T-cell population and no autoimmune disease. Comparison of the phenotype with that of other susceptible mice suggests that the development of autoimmune disease in Mcl-1tg/lpr mice may be influenced not only by Ig-producing cells but also other haemopoietic cell types.


Subject(s)
Autoimmune Diseases/pathology , Kidney Diseases/pathology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Animals , Autoantibodies/blood , Autoimmune Diseases/metabolism , Autoimmune Diseases/mortality , B-Lymphocytes/cytology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Female , Immunoglobulin G/blood , Kaplan-Meier Estimate , Kidney Diseases/metabolism , Kidney Diseases/mortality , Lymph Nodes/immunology , Lymph Nodes/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred MRL lpr , Mice, Transgenic , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Phenotype , T-Lymphocytes/cytology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , fas Receptor/genetics , fas Receptor/metabolism
14.
Cell Death Dis ; 7(9): e2351, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27584789

ABSTRACT

Inhibition of the apoptosis pathway controlled by opposing members of the Bcl-2 protein family plays a central role in cancer development and resistance to therapy. To investigate how pro-apoptotic Bcl-2 homology domain 3 (BH3)-only proteins impact on acute myeloid leukemia (AML), we generated mixed lineage leukemia (MLL)-AF9 and MLL-ENL AMLs from BH3-only gene knockout mice. Disease development was not accelerated by loss of Bim, Puma, Noxa, Bmf, or combinations thereof; hence these BH3-only proteins are apparently ineffectual as tumor suppressors in this model. We tested the sensitivity of MLL-AF9 AMLs of each genotype in vitro to standard chemotherapeutic drugs and to the proteasome inhibitor bortezomib, with or without the BH3 mimetic ABT-737. Loss of Puma and/or Noxa increased resistance to cytarabine, daunorubicin and etoposide, while loss of Bim protected against cytarabine and loss of Bmf had no impact. ABT-737 increased sensitivity to the genotoxic drugs but was not dependent on any BH3-only protein tested. The AML lines were very sensitive to bortezomib and loss of Noxa conveyed significant resistance. In vivo, several MLL-AF9 AMLs responded well to daunorubicin and this response was highly dependent on Puma and Noxa but not Bim. Combination therapy with ABT-737 provided little added benefit at the daunorubicin dose trialed. Bortezomib also extended survival of AML-bearing mice, albeit less than daunorubicin. In summary, our genetic studies reveal the importance of Puma and Noxa for the action of genotoxics currently used to treat MLL-driven AML and suggest that, while addition of ABT-737-like BH3 mimetics might enhance their efficacy, new Noxa-like BH3 mimetics targeting Mcl-1 might have greater potential.


Subject(s)
Carcinogenesis/pathology , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Biphenyl Compounds/pharmacology , Biphenyl Compounds/therapeutic use , Carcinogenesis/drug effects , Carcinogenesis/genetics , Daunorubicin/pharmacology , Daunorubicin/therapeutic use , Gene Expression Regulation, Leukemic/drug effects , Gene Knockout Techniques , Leukemia, Myeloid, Acute/pathology , Mice, Inbred C57BL , Myeloid-Lymphoid Leukemia Protein/metabolism , Nitrophenols/pharmacology , Nitrophenols/therapeutic use , Oncogene Proteins, Fusion/metabolism , Piperazines/pharmacology , Piperazines/therapeutic use , Sulfonamides/pharmacology , Sulfonamides/therapeutic use
15.
Trends Cancer ; 2(8): 443-460, 2016 08.
Article in English | MEDLINE | ID: mdl-28741496

ABSTRACT

Mutations that impair apoptosis contribute to cancer development and reduce the effectiveness of conventional anti-cancer therapies. These insights and understanding of how the B cell lymphoma (BCL)-2 protein family governs apoptosis have galvanized the search for a new class of cancer drugs that target its pro-survival members by mimicking their natural antagonists, the BCL-2 homology (BH)3-only proteins. Successful initial clinical trials of the BH3 mimetic venetoclax/ABT-199, specific for BCL-2, have led to its recent licensing for refractory chronic lymphocytic leukemia and to multiple ongoing trials for other malignancies. Moreover, preclinical studies herald the potential of emerging BH3 mimetics targeting other BCL-2 pro-survival members, particularly myeloid cell leukemia (MCL)-1, for multiple cancer types. Thus, BH3 mimetics seem destined to become powerful new weapons in the arsenal against cancer. This review sketches the discovery of the BCL-2 family and its impact on cancer development and therapy; describes how interactions of family members trigger apoptosis; outlines the development of BH3 mimetic drugs; and discusses their potential to advance cancer therapy.


Subject(s)
Neoplasms/drug therapy , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Aniline Compounds/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Apoptosis , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Humans , Neoplasms/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Sulfonamides/therapeutic use
18.
Blood ; 124(7): 1099-109, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-24986687

ABSTRACT

Mice susceptible to plasma cell tumors provide a useful model for human multiple myeloma. We previously showed that mice expressing an Eµ-v-abl oncogene solely develop plasmacytomas. Here we show that loss of the proapoptotic BH3-only protein Bim or, to a lesser extent, overexpression of antiapoptotic Bcl-2 or Mcl-1, significantly accelerated the development of plasmacytomas and increased their incidence. Disease was preceded by an increased abundance of plasma cells, presumably reflecting their enhanced survival capacity in vivo. Plasmacytomas of each genotype expressed high levels of v-abl and frequently harbored a rearranged c-myc gene, probably as a result of chromosome translocation. As in human multiple myelomas, elevated expression of cyclin D genes was common, and p53 deregulation was rare. Our results for plasmacytomas highlight the significance of antiapoptotic changes in multiple myeloma, which include elevated expression of Mcl-1 and, less frequently, Bcl-2, and suggest that closer attention to defects in Bim expression is warranted.


Subject(s)
Apoptosis/genetics , Gene Expression Regulation, Neoplastic , Plasmacytoma/genetics , Proto-Oncogene Proteins c-abl/genetics , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Bcl-2-Like Protein 11 , Blotting, Western , Cells, Cultured , Cyclin D1/genetics , Cyclin D1/metabolism , Female , Humans , Kaplan-Meier Estimate , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Multiple Myeloma/genetics , Mutation , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Plasmacytoma/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-abl/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
20.
Blood ; 121(12): 2285-8, 2013 Mar 21.
Article in English | MEDLINE | ID: mdl-23341542

ABSTRACT

BH3-only proteins trigger the stress apoptosis pathway and chemical mimetics have great potential for cancer therapy. BH3-only proteins inhibit antiapoptotic members of the Bcl-2 family. Promising BH3 mimetic ABT-737 and the related orally available compound ABT-263 (navitoclax) bind avidly to antiapoptotic Bcl-2, Bcl-xL, and Bcl-w. However, their interaction with Bcl-xL provokes thrombocytopenia, which has proven to be the dose-limiting toxicity. We have tested the efficacy of ABT-199, a new Bcl-2-specific BH3 mimetic, against aggressive progenitor cell lymphomas derived from bitransgenic myc/bcl-2 mice. As a single agent, ABT-199 was as effective as ABT-737 in prolonging survival of immunocompetent tumor-bearing mice without causing thrombocytopenia. Both drugs acted rapidly but, contrary to prevailing models, their apoptotic activity did not rely upon the BH3-only protein Bim. When ABT-737 was combined with the proteosome inhibitor bortezomib or CDK inhibitor purvalanol, many treated animals achieved long-term remission.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/adverse effects , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Lymphoma/drug therapy , Sulfonamides/adverse effects , Sulfonamides/therapeutic use , Thrombocytopenia/chemically induced , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomimetics , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Transformation, Neoplastic/genetics , Genes, myc/physiology , Lymphoma/genetics , Lymphoma/mortality , Lymphoma/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neoplasm Invasiveness , Peptide Fragments/pharmacology , Proto-Oncogene Proteins/pharmacology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/genetics , Substrate Specificity , Sulfonamides/pharmacology , Survival Analysis , Thrombocytopenia/epidemiology , Thrombocytopenia/prevention & control , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...