Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37765114

ABSTRACT

Neurodegeneration, characterized by the progressive deterioration of neurons and glial cells, is a feature of Alzheimer's disease (AD). The present study aims to demonstrate that the onset and early progression of neurodegenerative processes in transgenic mice models of AD can be delayed by a cocktail of neurotrophic factors and derived peptides named Nosustrophine, a nootropic supplement made by a peptide complex extracted from the young porcine brain, ensuring neuroprotection and improving neuro-functional recovery. Experimental 3xTg-APP/Bin1/COPS5 transgenic mice models of AD were treated with Nosustrophine at two different early ages, and their neuropathological hallmark and behavior response were analyzed. Results showed that Nosustrophine increased the activity of the immune system and reduced pathological changes in the hippocampus and cortex by halting the development of amyloid plaques, mainly seen in mice of 3-4 months of age, indicating that its effect is more preventive than therapeutic. Taken together, the results indicate the potent neuroprotective activity of Nosustrophine and its stimulating effects on neuronal plasticity. This study shows for the first time an effective therapy using nootropic supplements against degenerative diseases, although further investigation is needed to understand their molecular pathways.

2.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-37259364

ABSTRACT

Neurodegenerative disorders (NDDs) are major health issues in Western countries. Despite significant efforts, no effective therapeutics for NDDs exist. Several drugs that target epigenetic mechanisms (epidrugs) have been recently developed for the treatment of NDDs, and several of these are currently being tested in clinical trials. Furthermore, various bioproducts have shown important biological effects for the potential prevention and treatment of these disorders. Here, we review the use of natural products as epidrugs to treat NDDs in order to explore the epigenetic effects and benefits of functional foods and natural bioproducts on neurodegeneration.

3.
Biology (Basel) ; 12(6)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37372091

ABSTRACT

Dyslipidemia is a significant risk factor for cardiovascular disease and stroke. Our recent findings showed that RCI-1502, a bioproduct derived from the muscle of the European S. pilchardus, has lipid-lowering effects in the liver and heart in high-fat diet (HFD) fed mice. In the present follow-up study, we investigated the therapeutic potential of RCI-1502 on gene expression and DNA methylation in HFD-fed mice and in patients with dyslipidemia. Using LC-MS/MS, we identified 75 proteins in RCI-1502 that are primarily involved in binding and catalytic activity and which regulate pathways implicated in cardiovascular diseases. In HFD-fed mice, RCI-1502 treatment significantly reduced the expression of cardiovascular disease-related genes, including vascular cell adhesion molecule and angiotensin. RCI-1502 also decreased DNA methylation levels, which were elevated in HFD-fed mice, to levels similar to those in control animals. Furthermore, peripheral blood leukocyte DNA from dyslipidemic patients exhibited higher DNA methylation levels than healthy individuals, suggesting a potential association with cardiovascular risk. Serum analysis also revealed that RCI-1502 treatment regulated cholesterol and triglyceride levels in patients with dyslipidemia. Our findings appear to suggest that RCI-1502 is an epigenetic modulator for the treatment of cardiovascular diseases, specifically in individuals with dyslipidemia.

4.
Int J Med Sci ; 20(3): 292-306, 2023.
Article in English | MEDLINE | ID: mdl-36860672

ABSTRACT

Obesity is a major health challenge worldwide, with implications for diabetes, hypertension and cardiovascular disease (CVD). Regular consumption of dark-meat fish is linked to a lower incidence of CVD and associated metabolic disorders due to the presence of long-chain omega-3 fatty acid ethyl esters in fish oils. The aim of the present study was to determine whether a marine compound like a sardine lipoprotein extract (RCI-1502), regulates fat accumulation in the heart of a high-fat diet-induced (HFD) mouse model of obesity. To investigate its effects in the heart and liver, we conducted a randomized, 12-week placebo-controlled study in which we analyzed the expression of vascular inflammation markers, obesity biochemical patterns and related CVD pathologies. Male HFD-fed mice treated with a RCI-1502-supplemented diet showed reduced body weight, abdominal fat tissue and pericardial fat pad mass density without systemic toxicity. RCI-1502 significantly reduced triacylglyceride, low-density lipoprotein and total-cholesterol concentrations in serum, but increased HDL-cholesterol levels. Our data show that RCI-1502 is beneficial for reducing obesity associated with a long-term HFD, possibly by exerting a protective effect on lipidic homeostasis, indicated also by histopathological analysis. These results collectively indicate that RCI-1502 acts as a cardiovascular therapeutic nutraceutical agent, which modulates fat-induced inflammation and improves metabolic health.


Subject(s)
Cardiovascular Agents , Cardiovascular Diseases , Animals , Male , Mice , Cholesterol , Diet, High-Fat/adverse effects , Lipoproteins , Obesity/drug therapy , Pericardium
5.
Genes (Basel) ; 14(2)2023 01 30.
Article in English | MEDLINE | ID: mdl-36833292

ABSTRACT

DNA methylation remains an under-recognized diagnostic biomarker for several diseases, including neurodegenerative disorders. In this study, we examined differences in global DNA methylation (5mC) levels in serum samples from patients during the initial- and the follow-up visits. Each patient underwent a blood analysis and neuropsychological assessments. The analysis of 5mC levels revealed two categories of patients; Group A who, during the follow-up, had increased 5mC levels, and Group B who had decreased 5mC levels. Patients with low Fe-, folate-, and vitamin B12- levels during the initial visit showed increased levels of 5mC after treatment when assessed during the follow-up. During the follow-up, 5mC levels in Group A patients increased after treatment for hypovitaminosis with the nutraceutical compounds Animon Complex and MineraXin Plus. 5mC levels were maintained during the follow-up in Group A patients treated for neurological disorders with the bioproducts AtreMorine and NeoBrainine. There was a positive correlation between 5mC levels and MMSE scores, and an inverse correlation between 5mC and ADAS-Cog scores. This expected correlation was observed in Group A patients only. Our study appears to indicate that 5mC has a diagnostic value as a biomarker across different pathologies.


Subject(s)
DNA Methylation , Nervous System Diseases , Humans , Biomarkers , Folic Acid
6.
Pharmacogenomics ; 24(1): 27-57, 2023 01.
Article in English | MEDLINE | ID: mdl-36628952

ABSTRACT

Anxiety and depression coexist with cognitive impairment in Alzheimer's disease along with other concomitant disorders (>60%), which require multipurpose treatments. Polypharmaceutical regimens cause drug-drug interactions and adverse drug reactions, potentially avoidable in number and severity with the implementation of pharmacogenetic procedures. The accumulation of defective variants (>30 genes per patient in more than 50% of cases) in pharmagenes (pathogenic, mechanistic, metabolic, transporter, pleiotropic) influences the therapeutic response to antidementia, antidepressant and anxiolytic drugs in polyvalent regimens. APOE, CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, CYP3A5, CYP4F2, COMT, MAOB, CHAT, GSTP1, NAT2, SLC30A8, SLCO1B1, ADRA2A, ADRB2, BCHE, GABRA1, HMGCR, HTR2C, IFNL3, NBEA, UGT1A1, ABCB1, ABCC2, ABCG2, SLC6A2, SLC6A3, SLC6A4, MTHFR and OPRM1 variants affect anxiety and depression in Alzheimer's disease.


Subject(s)
Alzheimer Disease , Arylamine N-Acetyltransferase , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Pharmacogenetics/methods , Depression/drug therapy , Depression/genetics , Cytochrome P-450 CYP2D6/genetics , Anxiety/drug therapy , Anxiety/genetics , Liver-Specific Organic Anion Transporter 1 , Carrier Proteins , Nerve Tissue Proteins , Serotonin Plasma Membrane Transport Proteins
7.
Pharmaceutics ; 14(11)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36432638

ABSTRACT

Alzheimer's disease (AD), the most common cause of dementia, causes irreversible memory loss and cognitive deficits. Current AD drugs do not significantly improve cognitive function or cure the disease. Novel bioproducts are promising options for treating a variety of diseases, including neurodegenerative disorders. Targeting the epigenetic apparatus with bioactive compounds (epidrugs) may aid AD prevention treatment. The aims of this study were to determine the composition of a porcine brain-derived extract Nosustrophine, and whether treating young and older trigenic AD mice produced targeted epigenetic and neuroprotective effects against neurodegeneration. Nosustrophine regulated AD-related APOE and PSEN2 gene expression in young and older APP/BIN1/COPS5 mice, inflammation-related (NOS3 and COX-2) gene expression in 3-4-month-old mice only, global (5mC)- and de novo DNA methylation (DNMT3a), HDAC3 expression and HDAC activity in 3-4-month-old mice; and SIRT1 expression and acetylated histone H3 protein levels in 8-9-month-old mice. Mass spectrometric analysis of Nosustrophine extracts revealed the presence of adenosylhomocysteinase, an enzyme implicated in DNA methylation, and nicotinamide phosphoribosyltransferase, which produces the NAD+ precursor, enhancing SIRT1 activity. Our findings show that Nosustrophine exerts substantial epigenetic effects against AD-related neurodegeneration and establishes Nosustrophine as a novel nutraceutical bioproduct with epigenetic properties (epinutraceutical) that may be therapeutically effective for prevention and early treatment for AD-related neurodegeneration.

8.
Methods Mol Biol ; 2547: 275-387, 2022.
Article in English | MEDLINE | ID: mdl-36068470

ABSTRACT

Alzheimer's disease (AD) is a priority health problem in developed countries with a high cost to society. Approximately 20% of direct costs are associated with pharmacological treatment. Over 90% of patients require multifactorial treatments, with risk of adverse drug reactions (ADRs) and drug-drug interactions (DDIs) for the treatment of concomitant diseases such as hypertension (>25%), obesity (>70%), diabetes mellitus type 2 (>25%), hypercholesterolemia (40%), hypertriglyceridemia (20%), metabolic syndrome (20%), hepatobiliary disorder (15%), endocrine/metabolic disorders (>20%), cardiovascular disorder (40%), cerebrovascular disorder (60-90%), neuropsychiatric disorders (60-90%), and cancer (10%).For the past decades, pharmacological studies in search of potential treatments for AD focused on the following categories: neurotransmitter enhancers (11.38%), multitarget drugs (2.45%), anti-amyloid agents (13.30%), anti-tau agents (2.03%), natural products and derivatives (25.58%), novel synthetic drugs (8.13%), novel targets (5.66%), repository drugs (11.77%), anti-inflammatory drugs (1.20%), neuroprotective peptides (1.25%), stem cell therapy (1.85%), nanocarriers/nanotherapeutics (1.52%), and other compounds (<1%).Pharmacogenetic studies have shown that the therapeutic response to drugs in AD is genotype-specific in close association with the gene clusters that constitute the pharmacogenetic machinery (pathogenic, mechanistic, metabolic, transporter, pleiotropic genes) under the regulatory control of epigenetic mechanisms (DNA methylation, histone/chromatin remodeling, microRNA regulation). Most AD patients (>60%) are carriers of over ten pathogenic genes. The genes that most frequently (>50%) accumulate pathogenic variants in the same AD case are A2M (54.38%), ACE (78.94%), BIN1 (57.89%), CLU (63.15%), CPZ (63.15%), LHFPL6 (52.63%), MS4A4E (50.87%), MS4A6A (63.15%), PICALM (54.38%), PRNP (80.7059), and PSEN1 (77.19%). There is also an accumulation of 15 to 26 defective pharmagenes in approximately 85% of AD patients. About 50% of AD patients are carriers of at least 20 mutant pharmagenes, and over 80% are deficient metabolizers for the most common drugs, which are metabolized via the CYP2D6, CYP2C9, CYP2C19, and CYP3A4/5 enzymes.The implementation of pharmacogenetics can help optimize drug development and the limited therapeutic resources available to treat AD, and personalize the use of anti-dementia drugs in combination with other medications for the treatment of concomitant disorders.


Subject(s)
Alzheimer Disease , Pharmacogenetics , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Cholinesterase Inhibitors , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/metabolism , Cytochrome P-450 CYP2D6/therapeutic use , Drug Utilization , Humans
9.
Life (Basel) ; 12(3)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35330211

ABSTRACT

Alzheimer's disease (AD) is a priority health problem with a high cost to society and a large consumption of medical and social resources. The management of AD patients is complex and multidisciplinary. Over 90% of patients suffer from concomitant diseases and require personalized therapeutic regimens to reduce adverse drug reactions (ADRs), drug−drug interactions (DDIs), and unnecessary costs. Men and women show substantial differences in their AD-related phenotypes. Genomic, epigenetic, neuroimaging, and biochemical biomarkers are useful for predictive and differential diagnosis. The most frequent concomitant diseases include hypertension (>25%), obesity (>70%), diabetes mellitus type 2 (>25%), hypercholesterolemia (40%), hypertriglyceridemia (20%), metabolic syndrome (20%), hepatobiliary disorder (15%), endocrine/metabolic disorders (>20%), cardiovascular disorder (40%), cerebrovascular disorder (60−90%), neuropsychiatric disorders (60−90%), and cancer (10%). Over 90% of AD patients require multifactorial treatments with risk of ADRs and DDIs. The implementation of pharmacogenetics in clinical practice can help optimize the limited therapeutic resources available to treat AD and personalize the use of anti-dementia drugs, in combination with other medications, for the treatment of concomitant disorders.

10.
Int J Mol Sci ; 22(24)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34948113

ABSTRACT

Adverse drug reactions (ADRs) rank as one of the top 10 leading causes of death and illness in developed countries. ADRs show differential features depending upon genotype, age, sex, race, pathology, drug category, route of administration, and drug-drug interactions. Pharmacogenomics (PGx) provides the physician effective clues for optimizing drug efficacy and safety in major problems of health such as cardiovascular disease and associated disorders, cancer and brain disorders. Important aspects to be considered are also the impact of immunopharmacogenomics in cutaneous ADRs as well as the influence of genomic factors associated with COVID-19 and vaccination strategies. Major limitations for the routine use of PGx procedures for ADRs prevention are the lack of education and training in physicians and pharmacists, poor characterization of drug-related PGx, unspecific biomarkers of drug efficacy and toxicity, cost-effectiveness, administrative problems in health organizations, and insufficient regulation for the generalized use of PGx in the clinical setting. The implementation of PGx requires: (i) education of physicians and all other parties involved in the use and benefits of PGx; (ii) prospective studies to demonstrate the benefits of PGx genotyping; (iii) standardization of PGx procedures and development of clinical guidelines; (iv) NGS and microarrays to cover genes with high PGx potential; and (v) new regulations for PGx-related drug development and PGx drug labelling.


Subject(s)
Drug-Related Side Effects and Adverse Reactions/genetics , Drug-Related Side Effects and Adverse Reactions/metabolism , Pharmacogenetics/trends , Biomarkers , Cardiovascular Diseases/drug therapy , Central Nervous System Diseases/drug therapy , Cost-Benefit Analysis , Drug Development , Genotype , Humans , Neoplasms/drug therapy , Pharmaceutical Preparations , Pharmacogenetics/methods , Phenotype , COVID-19 Drug Treatment
11.
Med Res Rev ; 41(5): 2841-2886, 2021 09.
Article in English | MEDLINE | ID: mdl-34106485

ABSTRACT

Atremorine is a novel bioproduct obtained by nondenaturing biotechnological processes from a genetic species of Vicia faba. Atremorine is a potent dopamine (DA) enhancer with powerful effects on the neuronal dopaminergic system, acting as a neuroprotective agent in Parkinson's disease (PD). Over 97% of PD patients respond to a single dose of Atremorine (5 g, p.o.) 1 h after administration. This response is gender-, time-, dose-, and genotype-dependent, with optimal doses ranging from 5 to 20 g/day, depending upon disease severity and concomitant medication. Drug-free patients show an increase in DA levels from 12.14 ± 0.34 pg/ml to 6463.21 ± 1306.90 pg/ml; and patients chronically treated with anti-PD drugs show an increase in DA levels from 1321.53 ± 389.94 pg/ml to 16,028.54 ± 4783.98 pg/ml, indicating that Atremorine potentiates the dopaminergic effects of conventional anti-PD drugs. Atremorine also influences the levels of other neurotransmitters (adrenaline, noradrenaline) and hormones which are regulated by DA (e.g., prolactin, PRL), with no effect on serotonin or histamine. The variability in Atremorine-induced DA response is highly attributable to pharmacogenetic factors. Polymorphic variants in pathogenic (SNCA, NUCKS1, ITGA8, GPNMB, GCH1, BCKDK, APOE, LRRK2, ACMSD), mechanistic (DRD2), metabolic (CYP2D6, CYP2C9, CYP2C19, CYP3A4/5, NAT2), transporter (ABCB1, SLC6A2, SLC6A3, SLC6A4) and pleiotropic genes (APOE) influence the DA response to Atremorine and its psychomotor and brain effects. Atremorine enhances DNA methylation and displays epigenetic activity via modulation of the pharmacoepigenetic network. Atremorine is a novel neuroprotective agent for dopaminergic neurons with potential prophylactic and therapeutic activity in PD.


Subject(s)
Arylamine N-Acetyltransferase , Parkinson Disease , Dopamine , Dopamine Plasma Membrane Transport Proteins , Humans , Levodopa , Membrane Glycoproteins , Neuroprotection , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Pharmacogenetics , Serotonin Plasma Membrane Transport Proteins
12.
Pharmaceuticals (Basel) ; 14(4)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33920985

ABSTRACT

BACKGROUND: Mood disorders represent a risk factor for dementia and are present in over 60% of cases with Alzheimer's disease (AD). More than 80% variability in drug pharmacokinetics and pharmacodynamics is associated with pharmacogenetics. METHODS: Anxiety and depression symptoms were assessed in 1006 patients with dementia (591 females, 415 males) and the influence of pathogenic (APOE) and metabolic (CYP2D6, CYP2C19, and CYP2C9) gene variants on the therapeutic outcome were analyzed after treatment with a multifactorial regime in a natural setting. RESULTS AND CONCLUSIONS: (i) Biochemical, hematological, and metabolic differences may contribute to changes in drug efficacy and safety; (ii) anxiety and depression are more frequent and severe in females than males; (iii) both females and males respond similarly to treatment, showing significant improvements in anxiety and depression; (iv) APOE-3 carriers are the best responders and APOE-4 carriers tend to be the worst responders to conventional treatments; and (v) among CYP2D6, CYP2C19, and CYP2C9 genophenotypes, normal metabolizers (NMs) and intermediate metabolizers (IMs) are significantly better responders than poor metabolizers (PMs) and ultra-rapid metabolizers (UMs) to therapeutic interventions that modify anxiety and depression phenotypes in dementia. APOE-4 carriers and CYP-related PMs and UMs deserve special attention for their vulnerability and poor response to current treatments.

13.
Nutrients ; 12(3)2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32168971

ABSTRACT

The investigation of new alternatives for disease prevention through the application of findings from dietary and food biotechnology is an ongoing challenge for the scientific community. New nutritional trends and the need to meet social and health demands have inspired the concept of functional foods and nutraceuticals which, in addition to their overall nutritional value, present certain properties for the maintenance of health. However, these effects are not universal. Nutrigenetics describes how the genetic profile has an impact on the response of the body to bioactive food components by influencing their absorption, metabolism, and site of action. The EbioSea Program, for biomarine prospection, and the Blue Butterfly Program, for the screening of vegetable-derived bioproducts, have identified a new series of nutraceuticals, devoid of side effects at conventional doses, with genotype-dependent preventive and therapeutic activity. Nutrigenomics and nutrigenetics provide the opportunity to explore the inter-individual differences in the metabolism of and response to nutrients, achieving optimal results. This fact leads to the concept of personalized nutrition as opposed to public health nutrition. Consequently, the development and prescription of nutraceuticals according to the individual genetic profile is essential to improve their effectiveness in the prevention and natural treatment of prevalent diseases.


Subject(s)
Disease Susceptibility , Health Status , Nutritional Status , Animals , Biological Products , Biotechnology , Clinical Studies as Topic , Dietary Supplements , Drug Evaluation, Preclinical , Functional Food , Humans , Immunomodulation , Marine Biology , Public Health Surveillance , Research
14.
Planta Med ; 85(17): 1351-1362, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31559607

ABSTRACT

Atremorine is a novel bioproduct with neuroprotective effects on dopaminergic neurons and a natural L-DOPA donor in Parkinson's disease (PD). In the present study, we show the effects of a single dose of Atremorine (5 g, p. o.) on plasma dopamine (DA) response and brain function in PD (n = 183) and the influence that pathogenic (LRRK2), metabolic (CYP2D5, CYP2C9, CYP2C19, CYP3A5, NAT2), transporter (ABCB1), pleiotropic (APOE), and detoxifying genes (CYP1B1, GSTT1, GSTP1, GSTM1, SOD2) involved in the pharmacogenetic network exerts on Atremorine-induced DA response. Over 90% of PD patients at diagnosis show plasma DA levels below 20 pg/mL. Atremorine induces DA synthesis causing a significant increase in plasma DA levels 1 h after administration in practically 100% of patients. Females tend to show lower basal DA levels than males and the response of DA to Atremorine is stronger in males than in females. Atremorine-induced DA response is pharmacogenotype-specific and lasts from 6 - 12 h depending upon the pharmacogenetic profile of each patient. Genetic variants in pathogenic genes, metabolic genes, and genes involved in the detoxification processes affect the response of DA to Atremorine in a genotype-specific manner. Atremorine or any of its bioactive components can cross the blood-brain barrier and improve brain function and motor function, as revealed by the reduction in slow wave activity in brain mapping and psychometric assessment, respectively. Atremorine is a selective neuroprotective agent for dopaminergic neurons with prophylactic and therapeutic potential in PD.


Subject(s)
Biological Products/therapeutic use , Dopamine/blood , Levodopa/therapeutic use , Neuroprotective Agents/therapeutic use , Parkinson Disease/drug therapy , ATP-Binding Cassette Transporters/genetics , Cytochrome P-450 Enzyme System/genetics , Electroencephalography , Female , Genetic Pleiotropy , Genetic Variation , Genotyping Techniques , Glutathione Transferase/genetics , Humans , Male , Middle Aged , Parkinson Disease/blood , Parkinson Disease/genetics , Vicia faba/chemistry
15.
Int J Mol Sci ; 20(5)2019 Mar 12.
Article in English | MEDLINE | ID: mdl-30871086

ABSTRACT

Sirtuins (SIRT1-7) are NAD⁺-dependent protein deacetylases/ADP ribosyltransferases with important roles in chromatin silencing, cell cycle regulation, cellular differentiation, cellular stress response, metabolism and aging. Sirtuins are components of the epigenetic machinery, which is disturbed in Alzheimer's disease (AD), contributing to AD pathogenesis. There is an association between the SIRT2-C/T genotype (rs10410544) (50.92%) and AD susceptibility in the APOEε4-negative population (SIRT2-C/C, 34.72%; SIRT2-T/T 14.36%). The integration of SIRT2 and APOE variants in bigenic clusters yields 18 haplotypes. The 5 most frequent bigenic genotypes in AD are 33CT (27.81%), 33CC (21.36%), 34CT (15.29%), 34CC (9.76%) and 33TT (7.18%). There is an accumulation of APOE-3/4 and APOE-4/4 carriers in SIRT2-T/T > SIRT2-C/T > SIRT2-C/C carriers, and also of SIRT2-T/T and SIRT2-C/T carriers in patients who harbor the APOE-4/4 genotype. SIRT2 variants influence biochemical, hematological, metabolic and cardiovascular phenotypes, and modestly affect the pharmacoepigenetic outcome in AD. SIRT2-C/T carriers are the best responders, SIRT2-T/T carriers show an intermediate pattern, and SIRT2-C/C carriers are the worst responders to a multifactorial treatment. In APOE-SIRT2 bigenic clusters, 33CC carriers respond better than 33TT and 34CT carriers, whereas 24CC and 44CC carriers behave as the worst responders. CYP2D6 extensive metabolizers (EM) are the best responders, poor metabolizers (PM) are the worst responders, and ultra-rapid metabolizers (UM) tend to be better responders that intermediate metabolizers (IM). In association with CYP2D6 genophenotypes, SIRT2-C/T-EMs are the best responders. Some Sirtuin modulators might be potential candidates for AD treatment.


Subject(s)
Alzheimer Disease/genetics , Sirtuin 2/genetics , Sirtuins/genetics , Aged , Aged, 80 and over , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Cytochrome P-450 CYP2D6/genetics , Female , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Genotype , Heterozygote , Humans , Male , Middle Aged , Pharmacogenetics/methods , Phenotype
16.
Semin Cancer Biol ; 56: 175-184, 2019 06.
Article in English | MEDLINE | ID: mdl-29180118

ABSTRACT

Many clinical conditions exist in which it is desirable to stimulate or suppress the immune system, and many different drugs are able to do this. It is also well known that nutrition may affect human health and immune responses. Nutritional factors are crucial components of the diet and essential for normal growth and development of both vertebrate and invertebrate organisms. Many of these components have been shown to play different roles in the immune response and, under different circumstances, they can significantly modulate the immune system to create an effective response. Diet and its components are known to play an important factor in the process of inflammation and in turn on the health effects related to inflammation, such as cancer and cardiovascular diseases. Previous research so far has mainly looked at the effect of specific food stuffs or nutrients on inflammation and health outcomes. The aims of the present review was a) to underline the fact that diet as a whole plays an important role in modifying inflammation and health outcomes related to inflammation, aging, and colon cancer; b) to show the in vitro cytotoxic effect of LipoFishins (E-Congerine 10423®; AntiGan™) obtained from the Atlantic Conger conger marine organism present on the Galician coast, against different human tumor cell lines; c) to show the in vivo effect of E-Congerine-10423® on colonic inflammation induced in mice by seven weeks' exposure to 2% of dextran sulfate sodium (DSS); and d) to show the effect of E-Congerine-10423® (AntiGan™) on tumor markers (TMs) in healthy subjects and in patients with different types of cancer at the time of diagnosis. Preliminary data in a limited number of cases indicate that about 50% of the patients show a reduction in the levels of tumor markers (TM), and this response was much more evident in patients with cancer, when TM values are above normal range. Finally, all the above mentioned results suggest that diet has a major role in controlling inflammation and thereby plays an important role in the development or prevention of various chronic diseases, hence public health steps should be taken to modify the individual's whole diet and to promote the intake of specific natural compounds.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Colonic Neoplasms/prevention & control , Fishes , Inflammation/prevention & control , Aging , Animals , Anti-Inflammatory Agents/chemistry , Antineoplastic Agents/chemistry , Biological Products/chemistry , Chemoprevention , Colonic Neoplasms/epidemiology , Colonic Neoplasms/etiology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Diet , Disease Susceptibility , Drug Evaluation, Preclinical , Humans , Inflammation/epidemiology , Inflammation/etiology
17.
Curr Drug Metab ; 18(1): 39-49, 2017.
Article in English | MEDLINE | ID: mdl-27756198

ABSTRACT

BACKGROUND: Menopause-derived estrogen deprivation and related endocrine factors are linked to some symptoms typical of middle-aged women, such as hot flashes, aches, joint pain, stiffness, depressed mood, bone degeneration, nutritional dysfunction, or difficulty to maintain body mass. Clinical approaches to these problems often involve hormone replacement therapy and other modalities of therapeutic intervention. However, the well-known side effects associated with other pharmacological alternatives have led physicians and patients to pursue new strategies to alleviate these symptoms. As a physiological state, the first recommended option is a natural and healthy therapy, alone or in combination with pharmacotherapy in severe cases. Among other natural alternatives, E-MHK-0103, a nutraceutical lipoprotein extracted from Mytilus galloprovincialis, was found to have beneficial properties. METHODS: We reviewed numerous high-impact references to show the controversies over the current treatments used to alleviate menopausal symptoms, and presented the results obtained with E-MHK-0103 as a good natural alternative. RESULTS: E-MHK-0103 showed positive effects on hot flashes, mood swings, joint pain and bone stability, associated with its glucosamine-related anti-inflammatory effect and its high content of vitamins, minerals, iron and other substances, such as selenium and vitamin E. A significant increase in serum growth hormone, mediated by the hepatic secretion of insulin growth factor-1, and a slight decrease in bone alkaline phosphatase, calcium and ß-crosslaps concentrations contribute to its beneficial impact on bone turnover. E-MHK-0103 also showed a powerful antioxidant effect and an increase in iron stores, of particular importance in women with low basal ferritin levels. CONCLUSION: The findings of this review confirm the efficiency of natural therapies in menopause symptoms, and EMHK- 0103 as a healthy choice for inclusion into clinical practice.


Subject(s)
Dietary Supplements , Hot Flashes/drug therapy , Lipoproteins/therapeutic use , Menopause , Animals , Dietary Supplements/analysis , Female , Humans , Mood Disorders/prevention & control , Mytilus/chemistry , Osteoporosis, Postmenopausal/drug therapy
18.
CNS Neurol Disord Drug Targets ; 15(2): 141-241, 2016.
Article in English | MEDLINE | ID: mdl-26831267

ABSTRACT

Dementia represents a major problem of health and disability, with a relevant economic impact on our society. Despite important advances in pathogenesis, diagnosis and treatment, its primary causes still remain elusive, accurate biomarkers are not well characterized, and the available pharmacological treatments are not cost-effective. Alzheimer disease (AD), the most prevalent form of dementia, is a polygenic/multifactorial/complex disorder in which hundreds of defective genes distributed across the human genome may contribute to its pathogenesis. Diverse environmental factors, cerebrovascular dysfunction, and epigenetic phenomena, together with structural and functional genomic dysfunctions lead to amyloid deposition, neurofibrillary tangle formation and premature neuronal death, the major neuropathological hallmarks of AD. For the past 20 years, over 1,000 different compounds have been studied as potential candidate drugs for the treatment of AD. About 50% of these substances are novel molecules obtained from natural sources. The candidate compounds can be classified according to their pharmacological properties and/or the AD-related pathogenic cascade to which they are addressed to halt disease progression. In addition to the Food and Drug Administration (FDA)-approved drugs since 1993 (tacrine, donepezil, rivastigmine, galantamine, memantine), most candidate strategies fall into 6 major categories: (i) novel cholinesterase inhibitors and neurotransmitter regulators, (ii) anti-amyloid beta (Aß) treatments (amyloid-ß protein precursor (APP) regulators, Aß breakers, active and passive immunotherapy with vaccines and antibodies, ß - and γ - secretase inhibitors or modulators), (iii) anti-tau treatments, (iv) pleiotropic products (most of them of natural origin), (v) epigenetic intervention, and (vi) combination therapies. The implementation of pharmacogenomic strategies will contribute to optimize drug development and therapeutics in AD and related disorders.


Subject(s)
Cholinesterase Inhibitors/therapeutic use , Dementia/drug therapy , Drug Discovery/trends , Alzheimer Disease/diagnosis , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Amyloid beta-Peptides/metabolism , Animals , Cholinesterase Inhibitors/chemistry , Cholinesterase Inhibitors/pharmacology , Dementia/diagnosis , Dementia/metabolism , Drug Discovery/methods , Humans , Immunotherapy/methods , Immunotherapy/trends
19.
Int J Alzheimers Dis ; 2012: 518901, 2012.
Article in English | MEDLINE | ID: mdl-22482072

ABSTRACT

Dementia is a major problem of health in developed societies. Alzheimer's disease (AD), vascular dementia, and mixed dementia account for over 90% of the most prevalent forms of dementia. Both genetic and environmental factors are determinant for the phenotypic expression of dementia. AD is a complex disorder in which many different gene clusters may be involved. Most genes screened to date belong to different proteomic and metabolomic pathways potentially affecting AD pathogenesis. The ε4 variant of the APOE gene seems to be a major risk factor for both degenerative and vascular dementia. Metabolic factors, cerebrovascular disorders, and epigenetic phenomena also contribute to neurodegeneration. Five categories of genes are mainly involved in pharmacogenomics: genes associated with disease pathogenesis, genes associated with the mechanism of action of a particular drug, genes associated with phase I and phase II metabolic reactions, genes associated with transporters, and pleiotropic genes and/or genes associated with concomitant pathologies. The APOE and CYP2D6 genes have been extensively studied in AD. The therapeutic response to conventional drugs in patients with AD is genotype specific, with CYP2D6-PMs, CYP2D6-UMs, and APOE-4/4 carriers acting as the worst responders. APOE and CYP2D6 may cooperate, as pleiotropic genes, in the metabolism of drugs and hepatic function. The introduction of pharmacogenetic procedures into AD pharmacological treatment may help to optimize therapeutics.

20.
Curr Pharm Biotechnol ; 13(5): 674-725, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22122480

ABSTRACT

CNS disorders are the third major problem of health in developed countries, with approximately 10% of direct costs associated with a pharmacological treatment of doubtful cost-effectiveness. There is an alarming abuse of psychotropic drugs worldwide and only 20-30% of patients with CNS disorders appropriately respond to conventional drugs. The pathogenesis of most CNS disorders is the result of the interplay of genetic and epigenetic factors with environmental factors leading to post-transcriptional changes and proteomic and metabolomic dysfunctions. It is estimated that genetics accounts for 20% to 95% of variability in drug disposition and pharmacodynamics, and about 25-60% of the Western population is defective in genes responsible for drug metabolism. In the European population only 25% of subjects are pure extensive metabolizers for the trigenic cluster integrated by the CYP2D6, CYP2C19 and CYP2C9 genes. About 50% of adverse drug events in CNS disorders might be attributed to pharmacogenomic factors. The rationale for practical pharmacogenomics and personalized therapeutics based on individual genomic profiles implies the management of different types of genes and their products including (i) genes associated with the mechanism of action of psychotropic drugs (neurotransmitters, receptors, transporters), (ii) genes encoding enzymes responsible for drug metabolism (phase I, phase II reactions), (iii) disease-specific genes associated with a particular pathogenic cascade, and (iv) pleiotropic genes with multilocative effects in metabolomic networks. The incorporation of genomic medicine procedures and pharmacogenomics into clinical practice, together with educational programs for the correct use of medication, must help to optimize therapeutics in CNS disorders.


Subject(s)
Brain Diseases/drug therapy , Brain Diseases/genetics , Genomics , Pharmacogenetics , Brain Diseases/metabolism , Humans , Metabolomics , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...