Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Life Sci Alliance ; 7(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38514188

ABSTRACT

Leptospirosis is caused by pathogenic strains of the genus Leptospira and is considered the most widespread zoonotic bacterial disease. The genus is characterized by the large number of serology variants, which challenges developing effective serotyping methods and vaccines with a broad spectrum. Because knowledge on the genetic basis of the serological diversity among leptospires is still limited, we aimed to explore the genetic structure and patterns of the rfb locus, which is involved in the biosynthesis of lipopolysaccharides, the major surface antigen that defines the serovar in leptospires. Here, we used genomic data of 722 pathogenic samples and compared the gene composition of their rfb locus by hierarchical clustering. Clustering analysis showed that the rfb locus gene composition is species-independent and strongly associated with the serological classification. The samples were grouped into four well-defined classes, which cluster together samples either belonging to the same serogroup or from different serogroups but sharing serological affinity. Our findings can assist in the development of new strategies based on molecular methods, which can lead to better tools for serological identification in this zoonosis.


Subject(s)
Leptospira , Leptospirosis , Animals , Leptospira/genetics , Leptospirosis/genetics , Leptospirosis/microbiology , Zoonoses/microbiology , Serogroup , Genetic Structures
2.
Infect Genet Evol ; 103: 105345, 2022 09.
Article in English | MEDLINE | ID: mdl-35917899

ABSTRACT

Leptospirosis is a widely distributed zoonosis caused by pathogenic strains of bacteria of the genus Leptospira (Phylum Spirochaetes). Its agents are commonly classified based on their antigenic characteristics into serogroups and serovars, which are relevant for epidemiologic studies and vaccine development. Serological tests are considered laborious and require a specialized infrastructure. Some molecular methods have been proposed to accelerate these procedures, but they still can not replace the immunological tests, thus requiring a further understanding of the genetic basis underlying the serological classification. In this work, we focused on elucidating the genetic factors determinant for the serogroup Sejroe, which is one of the most prevalent serogroups in livestock. For this, we conducted a comparative analysis using >700 leptospiral genomic samples available in the public database. The analysis showed that the genes comprising the rfb locus are the main genetic factors associated with the serological classification. Samples from the serogroup Sejroe have an rfb locus with a conserved gene composition that differs from most other serogroups. Hebdomadis and Mini were the only serogroups whose samples have an rfb locus with similar gene composition to those from serogroup Sejroe, corroborating with the serological affinity shared by them. Finally, we could determine a small region in the rfb locus in which each of those three serogroups can be distinguished by its gene composition. This is the first work that uses an extensive repertoire of genomic data of leptospiral samples to elucidate the molecular basis of the serological classification and open the road to more reliable strategies based on molecular methods for serodiagnosis.


Subject(s)
Leptospira , Leptospirosis , Animals , Leptospira/genetics , Leptospirosis/microbiology , Livestock , Serogroup
3.
BMC Vet Res ; 13(1): 177, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28619055

ABSTRACT

BACKGROUND: Leptospirosis is caused by pathogenic spirochetes of the genus Leptospira spp. This zoonotic disease is distributed globally and affects domestic animals, including cattle. Leptospira interrogans serogroup Sejroe serovar Hardjo and Leptospira borgpetersenii serogroup Sejroe serovar Hardjo remain important species associated with this reproductive disease in livestock production. Previous studies on Brazilian livestock have reported that L. interrogans serovar Hardjo is the most prevalent leptospiral agent in this country and is related to clinical signs of leptospirosis, which lead to economic losses in production. Here, we described the isolation of three clinical strains (Norma, Lagoa and Bolivia) obtained from leptospirosis outbreaks that occurred in Minas Gerais state in 1994 and 2008. RESULTS: Serological and molecular typing using housekeeping (secY and 16SrRNA) and rfb locus (ORF22 and ORF36) genes were applied for the identification and comparative analysis of Leptospira spp. Our results identified the three isolates as L. interrogans serogroup Sejroe serovar Hardjo and confirmed the occurrence of this bacterial strain in Brazilian livestock. Genetic analysis using ORF22 and ORF36 grouped the Leptospira into serogroup Sejroe and subtype Hardjoprajitno. Genetic approaches were also applied to compare distinct serovars of L. interrogans strains by verifying the copy numbers of the IS1500 and IS1533 insertion sequences (ISs). The IS1500 copy number varied among the analyzed L. interrogans strains. CONCLUSION: This study provides evidence that L. interrogans serogroup Sejroe serovar Hardjo subtype Hardjoprajitno causes bovine leptospirosis in Brazilian production. The molecular results suggested that rfb locus (ORF22 and ORF36) could improve epidemiological studies by allowing the identification of Leptospira spp. at the serogroup level. Additionally, the IS1500 and IS1533 IS copy number analysis suggested distinct genomic features among closely related leptospiral strains.


Subject(s)
Cattle Diseases/microbiology , Disease Outbreaks/veterinary , Leptospira interrogans/isolation & purification , Leptospirosis/veterinary , Animals , Brazil/epidemiology , Cattle , Cattle Diseases/epidemiology , DNA Transposable Elements , DNA, Bacterial , DNA, Ribosomal , Genes, Bacterial , Genetic Loci , Leptospira interrogans/classification , Leptospira interrogans/genetics , Leptospirosis/epidemiology , Leptospirosis/microbiology , Molecular Typing , Open Reading Frames
4.
Microbiol Immunol ; 60(9): 586-98, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27468683

ABSTRACT

A severe re-emergingzoonosis, leptospirosis, is caused by pathogenic spirochetes of the genus Leptospira. Several studies have identified leptospiral surface proteins with the ability to bind ECM and plasma components, which could mediate adhesion and invasion through the hosts. It has been shown that Mce of pathogenic Leptospira spp. is an RGD (Arg-Gly-Asp)-motif-dependent virulence factor, responsible for infection of cells and animals. In the present article, we decided to further study the repertoire of the Mce activities in leptospiral biological properties. We report that the recombinant Mce is a broad-spectrum ECM-binding protein, capable of interacting with laminin, cellular and plasma fibronectin and collagen IV. Dose--r-esponse interaction was observed for all the components, fulfilling ligand--receptor requirements. Mce is a PLG binding protein capable to recruit this component from NHS, generating PLA in the presence of PLG activator. Binding of Mce was also observed with the leukocyte cell receptors αLß2 [(CD11a/CD18)-LFA-1] and αMß2 [(CD11b/CD18)-Mac-1], suggesting the involvement of this protein in the host immune response. Indeed, virulent Leptospira L1-130 was capable of binding both integrins, whereas culture-attenuated M-20 strain only bind to αMß2 [(CD11b/CD18)-Mac-1]. To the best of our knowledge, this is the first work to describe that Mce surface protein could mediate the attachment of Leptospira interrogans to human cell receptors αLß2(CD11a/CD18) and αMß2(CD11b/CD18).


Subject(s)
Bacterial Proteins/metabolism , CD18 Antigens/metabolism , Extracellular Matrix/metabolism , Leptospira interrogans/physiology , Leptospirosis/metabolism , Leptospirosis/microbiology , Plasminogen/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Enzyme Activation , Fibrinolysin/metabolism , Host-Pathogen Interactions , Humans , Ligands , Lymphocyte Function-Associated Antigen-1/metabolism , Macrophage-1 Antigen/metabolism , Open Reading Frames , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
5.
Vet. Immunol. Immunopathol ; 176: p. 50-57, 2016.
Article | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14469

ABSTRACT

Leptospirosis is a widespread zoonosis caused by pathogenic Leptospira spp. It is an important infectious disease that affects humans and animals. The disease causes economic losses as it affects livestock, with decreased milk production and death. Our group is investigating the genome sequences of L. interrogans targeting surface-exposed proteins because, due to their location, these proteins are capable to interact with several host components that could allow establishment of the infection. These interactions may involve adhesion of the bacteria to extracellular matrix (ECM) components and, hence, help bacterial colonization. The bacteria could also react with the host fibrinolytic system and/or with the coagulation cascade components, such as, plasminogen (PLG) and fibrinogen (Fg), respectively. The binding with the first system generates plasmin (PLA), increasing the proteolytic power of the bacteria, while the second interferes with clotting in a thrombin-catalyzed reaction, which may promote hemorrhage foci and increase bacterial dissemination. Interaction with the complement system negative regulators may help bacteria to evade the host immune system, facilitating the invasion. This work compiles the main described leptospiral proteins that could act as adhesins, as PLG and fibrinogen receptors and as complement regulator binding proteins. We present models in which we suggest possible mechanisms of how leptospires might colonize and invade host tissues, causing the disease. Understanding leptospiral pathogenesis will help to identify antigen candidates that would contribute to the development of more effective vaccines and diagnostic tests. (C) 2015 Elsevier B.V. All rights reserved.


Subject(s)
Allergy and Immunology , Bacteriology , Pathology
6.
Microbiol. Immunol ; 60(9): p. 586-598, 2016.
Article | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14307

ABSTRACT

A severe re-emergingzoonosis, leptospirosis, is caused by pathogenic spirochetes of the genus Leptospira. Several studies have identified leptospiral surface proteins with the ability to bind ECM and plasma components, which could mediate adhesion and invasion through the hosts. It has been shown that Mce of pathogenic Leptospira spp. is an RGD (Arg-Gly-Asp)-motif-dependent virulence factor, responsible for infection of cells and animals. In the present article, we decided to further study the repertoire of the Mce activities in leptospiral biological properties. We report that the recombinant Mce is a broad-spectrum ECM-binding protein, capable of interacting with laminin, cellular and plasma fibronectin and collagen IV. Dose-response interaction was observed for all the components, fulfilling ligand-receptor requirements. Mce is a PLG binding protein capable to recruit this component from NHS, generating PLA in the presence of PLG activator. Binding of Mce was also observed with the leukocyte cell receptors L2 [(CD11a/CD18)-LFA-1] and M2 [(CD11b/CD18)-Mac-1], suggesting the involvement of this protein in the host immune response. Indeed, virulent Leptospira L1-130 was capable of binding both integrins, whereas culture-attenuated M-20 strain only bind to M2 [(CD11b/CD18)-Mac-1]. To the best of our knowledge, this is the first work to describe that Mce surface protein could mediate the attachment of Leptospira interrogans to human cell receptors L2(CD11a/CD18) and M2(CD11b/CD18)


Subject(s)
Bacteriology , Microbiology , Allergy and Immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...