Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36904622

ABSTRACT

The employability of photonics technology in the modern era's highly demanding and sophisticated domain of aerospace and submarines has been an appealing challenge for the scientific communities. In this paper, we review our main results achieved so far on the use of optical fiber sensors for safety and security in innovative aerospace and submarine applications. In particular, recent results of in-field applications of optical fiber sensors in aircraft monitoring, from a weight and balance analysis to vehicle Structural Health Monitoring (SHM) and Landing Gear (LG) monitoring, are presented and discussed. Moreover, underwater fiber-optic hydrophones are presented from the design to marine application.

2.
Sensors (Basel) ; 23(5)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36904762

ABSTRACT

Our group, involving researchers from different universities in Campania, Italy, has been working for the last twenty years in the field of photonic sensors for safety and security in healthcare, industrial and environment applications. This is the first in a series of three companion papers. In this paper, we introduce the main concepts of the technologies employed for the realization of our photonic sensors. Then, we review our main results concerning the innovative applications for infrastructural and transportation monitoring.

3.
Sensors (Basel) ; 23(6)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36991894

ABSTRACT

In order to complete this set of three companion papers, in this last, we focus our attention on environmental monitoring by taking advantage of photonic technologies. After reporting on some configurations useful for high precision agriculture, we explore the problems connected with soil water content measurement and landslide early warning. Then, we concentrate on a new generation of seismic sensors useful in both terrestrial and under water contests. Finally, we discuss a number of optical fiber sensors for use in radiation environments.

4.
Sensors (Basel) ; 21(21)2021 Oct 23.
Article in English | MEDLINE | ID: mdl-34770339

ABSTRACT

This paper shows the results of the monitoring of the deformations of a tunnel, carried out using a distributed optical fiber strain sensor based on stimulated Brillouin scattering. The artificial tunnel of the national railway crosses the accumulation zone of an active landslide, the Varco d'Izzo earthflow, in the southern Italian Apennines. Severely damaged by the landslide movements, the tunnel was demolished and rebuilt in 1992 as a reinforced concrete box flanked by two deep sheet pile walls. In order to detect the onset of potentially dangerous strains of the tunnel structure and follow their time trend, the internal deformations of the tunnel are also monitored by a distributed fiber-optic strain sensor since 2016. The results of the monitoring activity show that the deformation profiles are characterized by strain peaks in correspondence of the structural joints. Furthermore, the elongation of the fiber strands crossing the joints is consistent with the data derived by other measurement systems. Experiments revealed an increase in the time rate of the fiber deformation in the first and last part of the monitoring period when the inclinometers of the area also recorded an acceleration in the landslide movements.


Subject(s)
Landslides , Optical Fibers , Fiber Optic Technology , Monitoring, Physiologic
5.
Sensors (Basel) ; 21(22)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34833589

ABSTRACT

We report the experimental application of distributed optical fiber sensors, based on stimulated Brillouin scattering (SBS), to the monitoring of a small-scale granular slope reconstituted in an instrumented flume and subjected to artificial rainfall until failure, and to the monitoring of a volcanic rock slope. The experiments demonstrate the sensors' ability to reveal the sudden increase in soil strain that foreruns the failure in a debris flow phenomenon, as well as to monitor the fractures in the tuff rocks. This study offers an important perspective on the use of distributed optical fiber sensors in the setting up of early warning systems for landslides in both rock and unconsolidated materials.

6.
Sensors (Basel) ; 21(15)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34372287

ABSTRACT

We demonstrate the use of a graded-index perfluorinated optical fiber (GI-POF) for distributed static and dynamic strain measurements based on Rayleigh scattering. The system is based on an amplitude-based phase-sensitive Optical Time-Domain Reflectometry (ϕ-OTDR) configuration, operated at the unconventional wavelength of 850 nm. Static strain measurements have been carried out at a spatial resolution of 4 m and for a strain up to 3.5% by exploiting the increase of the backscatter Rayleigh coefficient consequent to the application of a tensile strain, while vibration/acoustic measurements have been demonstrated for a sampling frequency up to 833 Hz by exploiting the vibration-induced changes in the backscatter Rayleigh intensity time-domain traces arising from coherent interference within the pulse. The reported tests demonstrate that polymer optical fibers can be used for cost-effective multiparameter sensing.

7.
Appl Opt ; 60(13): 3579-3584, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33983286

ABSTRACT

In this paper, we demonstrate automatic vehicle detection and counting by processing data acquired using a phase-sensitive optical time-domain reflectometer (ϕ-OTDR) distributed optical fiber sensor. The acquired data are processed using the Hough transform, which detects the lines in the images formed by representing the acquired data in the space-time domain. A rough classification of the vehicles (heavy versus light vehicles) is also proposed, based on the amplitude of the vibration data along the detected lines. The method has been experimentally tested by performing ϕ-OTDR measurements along a telecommunication fiber cable running in a buried conduit along the state road SS18 (province of Salerno, Italy), opened to normal traffic. Comparison with ground-truth data, manually generated by inspecting video recordings, allowed us to estimate a vehicle detection success rate up to 73%, while heavy vehicles were fully detected.

8.
Sensors (Basel) ; 20(19)2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33019695

ABSTRACT

Over the past three decades, extensive research activity on Brillouin scattering-based distributed optical fiber sensors has led to the availability of commercial instruments capable of measuring the static temperature/strain distribution over kilometer distances and with high spatial resolution, with applications typically covering structural and environmental monitoring. At the same time, the interest in dynamic measurements has rapidly grown due to the relevant number of applications which could benefit from this technology, including structural analysis for defect identification, vibration detection, railway traffic monitoring, shock events detection, and so on. In this paper, we present an overview of the recent advances in Brillouin-based distributed optical fiber sensors for dynamic sensing. The aspects of the Brillouin scattering process relevant in distributed dynamic measurements are analyzed, and the different techniques are compared in terms of performance and hardware complexity.

SELECTION OF CITATIONS
SEARCH DETAIL
...