Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38014066

ABSTRACT

Alphaviruses are arthropod-borne enveloped RNA viruses that include several important human pathogens with outbreak potential. Among them, eastern equine encephalitis virus (EEEV) is the most virulent, and many survivors develop neurological sequelae, including paralysis and intellectual disability. The spike proteins of alphaviruses comprise trimers of heterodimers of their envelope glycoproteins E2 and E1 that mediate binding to cellular receptors and fusion of virus and host cell membranes during entry. We recently identified very-low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2), two closely related proteins that are expressed in the brain, as cellular receptors for EEEV and a distantly related alphavirus, Semliki forest virus (SFV) 1 . The EEEV and SFV spike glycoproteins have low sequence homology, and how they have evolved to bind the same cellular receptors is unknown. Here, we used single-particle cryo-electron microscopy (cryo-EM) to determine structures of the EEEV and SFV spike glycoproteins bound to the VLDLR ligand-binding domain. The structures reveal that EEEV and SFV use distinct surfaces to bind VLDLR; EEEV uses a cluster of basic residues on the E2 subunit of its spike glycoprotein, while SFV uses two basic residues at a remote site on its E1 glycoprotein. Our studies reveal that different alphaviruses interact with the same cellular receptor through divergent binding modes. They further suggest that the ability of LDLR-related proteins to interact with viral spike proteins through very small footprints with flexible binding modes results in a low evolutionary barrier to the acquisition of LDLR-related proteins as cellular receptors for diverse sets of viruses.

2.
Science ; 375(6578): eabl6251, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34855508

ABSTRACT

Many studies have examined the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants on neutralizing antibody activity after they have become dominant strains. Here, we evaluate the consequences of further viral evolution. We demonstrate mechanisms through which the SARS-CoV-2 receptor binding domain (RBD) can tolerate large numbers of simultaneous antibody escape mutations and show that pseudotypes containing up to seven mutations, as opposed to the one to three found in previously studied variants of concern, are more resistant to neutralization by therapeutic antibodies and serum from vaccine recipients. We identify an antibody that binds the RBD core to neutralize pseudotypes for all tested variants but show that the RBD can acquire an N-linked glycan to escape neutralization. Our findings portend continued emergence of escape variants as SARS-CoV-2 adapts to humans.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Immune Evasion , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , BNT162 Vaccine/immunology , Betacoronavirus/immunology , COVID-19/immunology , COVID-19/virology , Cross Reactions , Cryoelectron Microscopy , Crystallography, X-Ray , Epitopes , Evolution, Molecular , Humans , Models, Molecular , Mutation , Polysaccharides/analysis , Protein Binding , Protein Domains , Receptors, Coronavirus/chemistry , Receptors, Coronavirus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Pseudotyping
3.
Nature ; 602(7897): 475-480, 2022 02.
Article in English | MEDLINE | ID: mdl-34929721

ABSTRACT

Alphaviruses, like many other arthropod-borne viruses, infect vertebrate species and insect vectors separated by hundreds of millions of years of evolutionary history. Entry into evolutionarily divergent host cells can be accomplished by recognition of different cellular receptors in different species, or by binding to receptors that are highly conserved across species. Although multiple alphavirus receptors have been described1-3, most are not shared among vertebrate and invertebrate hosts. Here we identify the very low-density lipoprotein receptor (VLDLR) as a receptor for the prototypic alphavirus Semliki forest virus. We show that the E2 and E1 glycoproteins (E2-E1) of Semliki forest virus, eastern equine encephalitis virus and Sindbis virus interact with the ligand-binding domains (LBDs) of VLDLR and apolipoprotein E receptor 2 (ApoER2), two closely related receptors. Ectopic expression of either protein facilitates cellular attachment, and internalization of virus-like particles, a VLDLR LBD-Fc fusion protein or a ligand-binding antagonist block Semliki forest virus E2-E1-mediated infection of human and mouse neurons in culture. The administration of a VLDLR LBD-Fc fusion protein has protective activity against rapidly fatal Semliki forest virus infection in mouse neonates. We further show that invertebrate receptor orthologues from mosquitoes and worms can serve as functional alphavirus receptors. We propose that the ability of some alphaviruses to infect a wide range of hosts is a result of their engagement of evolutionarily conserved lipoprotein receptors and contributes to their pathogenesis.


Subject(s)
Mosquito Vectors , Semliki forest virus , Animals , LDL-Receptor Related Proteins , Ligands , Mice , Receptors, LDL , Semliki forest virus/metabolism , Sindbis Virus/physiology
4.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33879614

ABSTRACT

The de novo design of polar protein-protein interactions is challenging because of the thermodynamic cost of stripping water away from the polar groups. Here, we describe a general approach for designing proteins which complement exposed polar backbone groups at the edge of beta sheets with geometrically matched beta strands. We used this approach to computationally design small proteins that bind to an exposed beta sheet on the human transferrin receptor (hTfR), which shuttles interacting proteins across the blood-brain barrier (BBB), opening up avenues for drug delivery into the brain. We describe a design which binds hTfR with a 20 nM Kd, is hyperstable, and crosses an in vitro microfluidic organ-on-a-chip model of the human BBB. Our design approach provides a general strategy for creating binders to protein targets with exposed surface beta edge strands.


Subject(s)
Protein Engineering/methods , Receptors, Transferrin/metabolism , Receptors, Transferrin/physiology , Blood-Brain Barrier/metabolism , Brain/metabolism , Drug Delivery Systems , Humans , Proteins/metabolism , Transferrin/metabolism
5.
Cell ; 184(10): 2605-2617.e18, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33831372

ABSTRACT

Many individuals mount nearly identical antibody responses to SARS-CoV-2. To gain insight into how the viral spike (S) protein receptor-binding domain (RBD) might evolve in response to common antibody responses, we studied mutations occurring during virus evolution in a persistently infected immunocompromised individual. We use antibody Fab/RBD structures to predict, and pseudotypes to confirm, that mutations found in late-stage evolved S variants confer resistance to a common class of SARS-CoV-2 neutralizing antibodies we isolated from a healthy COVID-19 convalescent donor. Resistance extends to the polyclonal serum immunoglobulins of four out of four healthy convalescent donors we tested and to monoclonal antibodies in clinical use. We further show that affinity maturation is unimportant for wild-type virus neutralization but is critical to neutralization breadth. Because the mutations we studied foreshadowed emerging variants that are now circulating across the globe, our results have implications to the long-term efficacy of S-directed countermeasures.


Subject(s)
Antibodies, Viral/immunology , COVID-19 , Evolution, Molecular , Immune Evasion/immunology , Immunocompromised Host , Immunoglobulin Fab Fragments/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Antibodies, Neutralizing , COVID-19/genetics , COVID-19/immunology , Female , HEK293 Cells , Humans , Male , Protein Domains , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology
6.
PLoS Pathog ; 17(3): e1009356, 2021 03.
Article in English | MEDLINE | ID: mdl-33647064

ABSTRACT

Several arenaviruses cause hemorrhagic fevers in humans with high case fatality rates. A vaccine named Candid#1 is available only against Junin virus (JUNV) in Argentina. Specific N-linked glycans on the arenavirus surface glycoprotein (GP) mask important epitopes and help the virus evade antibody responses. However the role of GPC glycans in arenavirus pathogenicity is largely unclear. In a lethal animal model of hemorrhagic fever-causing Machupo virus (MACV) infection, we found that a chimeric MACV with the ectodomain of GPC from Candid#1 vaccine was partially attenuated. Interestingly, mutations resulting in acquisition of N-linked glycans at GPC N83 and N166 frequently occurred in late stages of the infection. These glycosylation sites are conserved in the GPC of wild-type MACV, indicating that this is a phenotypic reversion for the chimeric MACV to gain those glycans crucial for infection in vivo. Further studies indicated that the GPC mutant viruses with additional glycans became more resistant to neutralizing antibodies and more virulent in animals. On the other hand, disruption of these glycosylation sites on wild-type MACV GPC rendered the virus substantially attenuated in vivo and also more susceptible to antibody neutralization, while loss of these glycans did not affect virus growth in cultured cells. We also found that MACV lacking specific GPC glycans elicited higher levels of neutralizing antibodies against wild-type MACV. Our findings revealed the critical role of specific glycans on GPC in arenavirus pathogenicity and have important implications for rational design of vaccines against this group of hemorrhagic fever-causing viruses.


Subject(s)
Antibodies, Viral/immunology , Arenavirus/immunology , Hemorrhagic Fever, American/virology , Junin virus/pathogenicity , Animals , Antibodies, Neutralizing/immunology , Arenaviruses, New World/genetics , Arenaviruses, New World/immunology , Arenaviruses, New World/pathogenicity , Hemorrhagic Fever, American/immunology , Hemorrhagic Fever, American/prevention & control , Humans , Junin virus/immunology , Viral Vaccines/immunology
7.
bioRxiv ; 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33200128

ABSTRACT

The SARS-CoV-2 viral spike (S) protein mediates attachment and entry into host cells and is a major target of vaccine and drug design. Potent SARS-CoV-2 neutralizing antibodies derived from closely related antibody heavy chain genes (IGHV3-53 or 3-66) have been isolated from multiple COVID-19 convalescent individuals. These usually contain minimal somatic mutations and bind the S receptor-binding domain (RBD) to interfere with attachment to the cellular receptor angiotensin-converting enzyme 2 (ACE2). We used antigen-specific single B cell sorting to isolate S-reactive monoclonal antibodies from the blood of a COVID-19 convalescent individual. The seven most potent neutralizing antibodies were somatic variants of the same IGHV3-53-derived antibody and bind the RBD with varying affinity. We report X-ray crystal structures of four Fab variants bound to the RBD and use the structures to explain the basis for changes in RBD affinity. We show that a germline revertant antibody binds tightly to the SARS-CoV-2 RBD and neutralizes virus, and that gains in affinity for the RBD do not necessarily correlate with increased neutralization potency, suggesting that somatic mutation is not required to exert robust antiviral effect. Our studies clarify the molecular basis for a heavily germline-biased human antibody response to SARS-CoV-2.

8.
J Biol Chem ; 295(21): 7452-7469, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32273339

ABSTRACT

Mitochondrial dysfunction underlies many heritable diseases, acquired pathologies, and aging-related declines in health. Szeto-Schiller (SS) peptides comprise a class of amphipathic tetrapeptides that are efficacious toward a wide array of mitochondrial disorders and are believed to target mitochondrial membranes because they are enriched in the anionic phospholipid cardiolipin (CL). However, little is known regarding how SS peptides interact with or alter the physical properties of lipid bilayers. In this study, using biophysical and computational approaches, we have analyzed the interactions of the lead compound SS-31 (elamipretide) with model and mitochondrial membranes. Our results show that this polybasic peptide partitions into the membrane interfacial region with an affinity and a lipid binding density that are directly related to surface charge. We found that SS-31 binding does not destabilize lamellar bilayers even at the highest binding concentrations; however, it did cause saturable alterations in lipid packing. Most notably, SS-31 modulated the surface electrostatics of both model and mitochondrial membranes. We propose nonexclusive mechanisms by which the tuning of surface charge could underpin the mitoprotective properties of SS-31, including alteration of the distribution of ions and basic proteins at the interface, and/or modulation of bilayer physical properties. As a proof of concept, we show that SS-31 alters divalent cation (calcium) distribution within the interfacial region and reduces the energetic burden of calcium stress in mitochondria. The mechanistic details of SS-31 revealed in this study will help inform the development of future compound variants with enhanced efficacy and bioavailability.


Subject(s)
Lipid Bilayers/chemistry , Oligopeptides/chemistry , Calcium/metabolism , Mitochondria/metabolism , Saccharomyces cerevisiae/metabolism , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...