Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Bot ; 108(2): 381-90, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21724654

ABSTRACT

BACKGROUND AND AIMS: High alpine environments are characterized by short growing seasons, stochastic climatic conditions and fluctuating pollinator visits. These conditions are rather unfavourable for sexual reproduction of flowering plants. Apomixis, asexual reproduction via seed, provides reproductive assurance without the need of pollinators and potentially accelerates seed development. Therefore, apomixis is expected to provide selective advantages in high-alpine biota. Indeed, apomictic species occur frequently in the subalpine to alpine grassland zone of the European Alps, but the mode of reproduction of the subnival to nival flora was largely unknown. METHODS: The mode of reproduction in 14 species belonging to seven families was investigated via flow cytometric seed screen. The sampling comprised 12 species typical for nival to subnival plant communities of the European Alps without any previous information on apomixis (Achillea atrata, Androsace alpina, Arabis caerulea, Erigeron uniflorus, Gnaphalium hoppeanum, Leucanthemopsis alpina, Oxyria digyna, Potentilla frigida, Ranunculus alpestris, R. glacialis, R. pygmaeus and Saxifraga bryoides), and two high-alpine species with apomixis reported from other geographical areas (Leontopodium alpinum and Potentilla crantzii). KEY RESULTS: Flow cytometric data were clearly interpretable for all 46 population samples, confirming the utility of the method for broad screenings on non-model organisms. Formation of endosperm in all species of Asteraceae was documented. Ratios of endosperm : embryo showed pseudogamous apomixis for Potentilla crantzii (ratio approx. 3), but sexual reproduction for all other species (ratios approx. 1·5). CONCLUSIONS: The occurrence of apomixis is not correlated to high altitudes, and cannot be readily explained by selective forces due to environmental conditions. The investigated species have probably other adaptations to high altitudes to maintain reproductive assurance via sexuality. We hypothesize that shifts to apomixis are rather connected to frequencies of polyploidization than to ecological conditions.


Subject(s)
Adaptation, Physiological , Altitude , Asteraceae/growth & development , Plant Physiological Phenomena , Achillea/growth & development , Arabis/growth & development , Erigeron/growth & development , Europe , Gnaphalium/growth & development , Potentilla/growth & development , Ranunculus/growth & development , Reproduction, Asexual , Saxifragaceae/growth & development , Seeds/growth & development
2.
Ann Bot ; 105(3): 457-70, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20100695

ABSTRACT

BACKGROUND AND AIMS: Asexual organisms are more widespread in previously glaciated areas than their sexual relatives ('geographical parthenogenesis'). In plants, this pattern is probably dependent on reproductive isolation and stability of cytotypes within their respective distribution areas. Both partial apomixis and introgressive hybridization potentially destabilize the spatial separation of sexual and apomictic populations. The wide distribution of apomicts may be further enhanced by uniparental reproduction which is advantageous for colonization. These factors are studied in the alpine species Ranunculus kuepferi. METHODS: Geographical distribution, diversity and mode of reproduction of cytotypes were assessed using flow cytometry and flow cytometric seed screening on samples from 59 natural populations of Ranunculus kuepferi. Seed set of cytotypes was compared in the wild. KEY RESULTS: Diploid sexuals are confined to the south-western parts of the Alps, while tetraploid apomicts dominate in previously glaciated and in geographically isolated areas despite a significantly lower fertility. Other cytotypes (3x, 5x and 6x) occur mainly in the sympatric zone, but without establishing populations. The tetraploids are predominantly apomictic, but also show a partial apomixis via an uncoupling of apomeiosis and parthenogenesis in the seed material. Both pseudogamy and autonomous endosperm formation are observed which may enhance uniparental reproduction. CONCLUSIONS: Diploids occupy a glacial relic area and resist introgression of apomixis, probably because of a significantly higher seed set. Among the polyploids, only apomictic tetraploids form stable populations; the other cytotypes arising from partial apomixis fail to establish, probably because of minority cytotype disadvantages. Tetraploid apomicts colonize previously devastated and also distant areas via long-distance dispersal, confirming Baker's law of an advantage of uniparental reproduction. It is concluded that stability of cytotypes and of modes of reproduction are important factors for establishing a pattern of geographical parthenogenesis.


Subject(s)
Parthenogenesis , Ranunculaceae/physiology
3.
Plant Ecol Divers ; 1(2): 309-320, 2008 Nov 01.
Article in English | MEDLINE | ID: mdl-20936092

ABSTRACT

Asexual organisms usually have larger, and in the Northern Hemisphere, more northern distributions than their sexual relatives. This phenomenon, called geographical parthenogenesis, has been attributed to predispositions in certain taxa, advantages of polyploidy and/or hybrid origin, advantages of uniparental reproduction, introgression of apomixis into sexuals, niche differentiation of clones, and biotic interactions. Here we focus on the role of uniparental reproduction in colonisation, and the importance of different developmental pathways, i.e. autonomous apomixis which does not require pollination and fertilisation of endosperm nuclei for successful seed set, and pseudogamous apomixis which does. A literature survey suggests that geographical parthenogenesis occurs frequently in species with autonomous apomixis, while the correlation with pseudogamy is poorly documented. However, taxonomic patterns (e.g. predominance of Asteraceae) and also methodological bias may influence estimates of frequencies of geographical parthenogenesis. We demonstrate that a flow cytometric seed screen (FCSS) is a powerful method for assessing pseudogamous vs. autonomous apomixis. We show that population genetic studies provide insights into the genetic diversity of apomicts, but do not give strong support for uniparental reproduction being the only explanation of geographical parthenogenesis. Molecular studies help elucidate the evolutionary and biogeographical history of apomictic complexes, and we conclude that multidisciplinary studies are needed to understand fully the phenomenon of geographical parthenogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...