Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Pathol ; 35(7): 1013-29, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18098052

ABSTRACT

Recombinant human glial cell line-derived neurotrophic factor (r-metHuGDNF) is a potent neuronal growth and survival factor that has been considered for clinical use in the treatment of Parkinson's disease (PD). Here we present results of a 6-month toxicology study in rhesus monkeys conducted to support clinical evaluation of chronic intraputamenal infusion of r-metHuGDNF for PD. Monkeys (6-9/sex/group) were treated with 0 (vehicle), 15, 30, or 100 microg/day r-metHuGDNF by continuous unilateral intraputamenal infusion (150 microl/day flow rate) for 6 months; a subset of animals (2-3/sex/group) underwent a subsequent 3-month treatment-free recovery period. Notable observations included reduced food consumption and body weight at 100 microg/day and meningeal thickening underlying the medulla oblongata and/or overlying various spinal cord segments at 30 and 100 microg/day. In addition, multifocal cerebellar Purkinje cell loss (with associated atrophy of the molecular layer and, in some cases, granule cell loss) was observed in 4 monkeys in the 100-microg/day group. This cerebellar finding has not been observed in previous nonclinical studies evaluating r-metHuGDNF. The small number of affected animals precludes definitive conclusions regarding the pathogenesis of the cerebellar lesion, but the data support an association with r-metHuGDNF treatment.


Subject(s)
Cerebellum/drug effects , Glial Cell Line-Derived Neurotrophic Factor/toxicity , Putamen/drug effects , Animals , Antibodies/blood , Antibodies/cerebrospinal fluid , Body Weight/drug effects , Cerebellum/pathology , Dose-Response Relationship, Drug , Female , Glial Cell Line-Derived Neurotrophic Factor/analysis , Glial Cell Line-Derived Neurotrophic Factor/immunology , Glial Cell Line-Derived Neurotrophic Factor/pharmacokinetics , Humans , Immunohistochemistry , Inflammation/chemically induced , Macaca mulatta , Magnetic Resonance Imaging , Male , Meninges/drug effects , Meninges/pathology , Recombinant Proteins/toxicity
2.
Toxicol Pathol ; 35(5): 676-92, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17763282

ABSTRACT

Recombinant human glial cell line-derived neurotrophic factor (r-metHuGDNF) is a potent neuronal growth and survival factor that has been considered for clinical use in the treatment of Parkinson's disease (PD). Here we present results of a 6-month toxicology study in rhesus monkeys conducted to support clinical evaluation of chronic intraputamenal infusion of r-metHuGDNF for PD. Monkeys (6-9/sex/group) were treated with 0 (vehicle), 15, 30, or 100 micro g/day r-metHuGDNF by continuous unilateral intraputamenal infusion (150 micro l/day flow rate) for 6 months; a subset of animals (2-3/sex/group) underwent a subsequent 3-month treatment-free recovery period. Notable observations included reduced food consumption and body weight at 100 micro g/day and meningeal thickening underlying the medulla oblongata and/or overlying various spinal cord segments at 30 and 100 micro g/day. In addition, multifocal cerebellar Purkinje cell loss (with associated atrophy of the molecular layer and, in some cases, granule cell loss) was observed in 4 monkeys in the 100-micro g/day group. This cerebellar finding has not been observed in previous nonclinical studies evaluating r-metHuGDNF. The small number of affected animals precludes definitive conclusions regarding the pathogenesis of the cerebellar lesion, but the data support an association with r-metHuGDNF treatment.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor/toxicity , Putamen/drug effects , Animals , Antibodies/analysis , Cerebellum/drug effects , Cerebellum/pathology , Dose-Response Relationship, Drug , Female , Glial Cell Line-Derived Neurotrophic Factor/analysis , Glial Cell Line-Derived Neurotrophic Factor/immunology , Glial Cell Line-Derived Neurotrophic Factor/pharmacokinetics , Immunohistochemistry , Macaca mulatta , Magnetic Resonance Imaging , Male , Meninges/drug effects , Meninges/pathology , Recombinant Proteins/toxicity
3.
Toxicol Pathol ; 33(3): 343-55, 2005.
Article in English | MEDLINE | ID: mdl-15805072

ABSTRACT

A vast majority of pharmacological compounds and their metabolites are excreted via the urine, and within the complex structure of the kidney,the proximal tubules are a main target site of nephrotoxic compounds. We used the model nephrotoxicants mercuric chloride, 2-bromoethylamine hydrobromide, hexachlorobutadiene, mitomycin, amphotericin, and puromycin to elucidate time- and dose-dependent global gene expression changes associated with proximal tubular toxicity. Male Sprague-Dawley rats were dosed via intraperitoneal injection once daily for mercuric chloride and amphotericin (up to 7 doses), while a single dose was given for all other compounds. Animals were exposed to 2 different doses of these compounds and kidney tissues were collected on day 1, 3, and 7 postdosing. Gene expression profiles were generated from kidney RNA using 17K rat cDNA dual dye microarray and analyzed in conjunction with histopathology. Analysis of gene expression profiles showed that the profiles clustered based on similarities in the severity and type of pathology of individual animals. Further, the expression changes were indicative of tubular toxicity showing hallmarks of tubular degeneration/regeneration and necrosis. Use of gene expression data in predicting the type of nephrotoxicity was then tested with a support vector machine (SVM)-based approach. A SVM prediction module was trained using 120 profiles of total profiles divided into four classes based on the severity of pathology and clustering. Although mitomycin C and amphotericin B treatments did not cause toxicity, their expression profiles were included in the SVM prediction module to increase the sample size. Using this classifier, the SVM predicted the type of pathology of 28 test profiles with 100% selectivity and 82% sensitivity. These data indicate that valid predictions could be made based on gene expression changes from a small set of expression profiles. A set of potential biomarkers showing a time- and dose-response with respect to the progression of proximal tubular toxicity were identified. These include several transporters (Slc21a2, Slc15, Slc34a2), Kim 1, IGFbp-1, osteopontin, alpha-fibrinogen, and Gstalpha.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Gene Expression Profiling , Genetic Markers , Kidney/drug effects , Kidney/pathology , Microarray Analysis , Animals , Antibiotics, Antineoplastic/toxicity , Butadienes/toxicity , Disinfectants/toxicity , Dose-Response Relationship, Drug , Ethylamines/toxicity , Fungicides, Industrial/toxicity , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/pathology , Male , Mercuric Chloride/toxicity , Predictive Value of Tests , Puromycin Aminonucleoside/toxicity , Rats , Rats, Sprague-Dawley , Time Factors , Toxicogenetics
SELECTION OF CITATIONS
SEARCH DETAIL
...