Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 267: 115599, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33254697

ABSTRACT

Agricultural burning and forest fires are common in Northeast Asia and contribute to the elevation of fine particulate pollution, which greatly affects air quality. In this study, chemical and physical attributes, as well as the oxidative potential of fine particles produced from rice straw and pine stem burning in a laboratory-scale chamber were determined. The burning of rice straw generated notably lower emissions of fine particles and elemental carbon (EC) than did the burning of pine stems. The longer retention of ultrafine particles was observed for rice straw burning likely caused by this material's longer period of initial flaming combustion. Organic carbon (OC), OC/EC, K+/OC, K+/EC, Zn, and alkanoic acid were higher in the fine particles of rice straw burning, while EC, K+/Cl-, Fe, Cr, Al, Cu, and levoglucosan were higher for pine stem burning particles. Chemical data were consistent with a higher hygroscopic growth factor and cloud formation potential and lower amount of agglomerated soot for rice straw burning particles. Rice straw burning particles displayed an oxidative potential seven times higher than that of pine stems.


Subject(s)
Air Pollutants , Oryza , Pinus , Agriculture , Biomass , Carbon , Environmental Monitoring , Oxidative Stress , Particulate Matter
2.
Environ Pollut ; 243(Pt B): 1679-1688, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30300873

ABSTRACT

The oxidative potential (OP) and chemical characteristics of fine particles collected from urban, roadside, rural, and industrial sites in Korea during spring, summer, fall, and winter seasons and an urban site in the Philippines during dry and wet seasons were examined. Significant differences in the OP of fine particles among sites and seasons were found. The industrial site yielded the highest OP activity (both mass and volume-normalized OP) among the sites, suggesting the strongest reactive oxygen species (ROS)-generating capability of industry source-dominant PM2.5. Seasonal data show that OP activities increased during the spring and summer possibly due to increased heavy metals caused by dust events and secondary organic aerosols formed by strong photochemical activity, respectively. The strength of the OP association with the chemical components highlights the influence of organic carbon and transition metals on the OP of ambient fine particles. The two OP assays (dithiothreitol (DTT) and electron spin resonance (ESR)) having different ROS-generating mechanisms were found to have different sensitivities to the chemical components facilitating a complementary analysis of the OP of ambient fine particles. Multiple linear regression model equations (OP as a function of chemical components) which were dependent on the sites were derived. A comparison of the daily OP and hazard index (HI) (the ratio of the measured mass concentration to the reference mass concentration of fine particles) suggests that the HI may not be sufficient to accurately estimate the health effects of fine particles, and a direct or indirect measurement of toxicity such as OP should be required in addition to the concentration level.


Subject(s)
Air Pollutants/chemistry , Dust/analysis , Environmental Monitoring/methods , Oxidants, Photochemical/chemistry , Particulate Matter/chemistry , Aerosols/analysis , Air Pollutants/analysis , Dithiothreitol/chemistry , Electron Spin Resonance Spectroscopy , Oxidation-Reduction , Oxidative Stress , Particle Size , Particulate Matter/analysis , Philippines , Reactive Oxygen Species/chemistry , Republic of Korea , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...