Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(5)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38475281

ABSTRACT

It has long been known that starch as a raw material is of strategic importance for meeting primarily the nutritional needs of people around the world. Year by year, the demand not only for traditional but also for functional food based on starch and its derivatives is growing. Problems with the availability of petrochemical raw materials, as well as environmental problems with the recycling of post-production waste, make non-food industries also increasingly interested in this biopolymer. Its supporters will point out countless advantages such as wide availability, renewability, and biodegradability. Opponents, in turn, will argue that they will not balance the problems with its processing and storage and poor functional properties. Hence, the race to find new methods to improve starch properties towards multifunctionality is still ongoing. For these reasons, in the presented review, referring to the structure and physicochemical properties of starch, attempts were made to highlight not only the current limitations in its processing but also new possibilities. Attention was paid to progress in the non-selective and selective functionalization of starch to obtain materials with the greatest application potential in the food (resistant starch, dextrins, and maltodextrins) and/or in the non-food industries (hydrophobic and oxidized starch).

2.
Polymers (Basel) ; 16(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38399938

ABSTRACT

Polymeric photocrosslinked networks, of particular interest in the design of materials with targeted characteristics, can be easily prepared by grafting light-sensitive moieties, such as methacrylates, on polymeric chains and, after photochemical reactions, provide materials with multiple applications via photopolymerization. In this work, photopolymerizable urethane-methacrylate sequences were attached to free hydroxyl units of cellulose acetate chains in various proportions (functionalization degree from 5 to 100%) to study the properties of the resulting macromolecules and the influence of the cellulosic material structure on the double bond conversion degree. Additionally, to manipulate the properties of the photocured systems, the methacrylate-functionalized cellulose acetate derivatives were mixed with low molecular weight dimethacrylate derivatives (containing castor oil and polypropylene glycol flexible chains), and the influence of UV-curable composition on the photopolymerization parameters being studied. The achieved data reveal that the addition of dimethacrylate comonomers augmented the polymerization rates and conversion degrees, leading to polymer networks with various microstructures.

3.
Carbohydr Polym ; 328: 121707, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38220342

ABSTRACT

In this study, the quaternized carboxymethyl chitosan (QCMCS), oxidized hyaluronic acid (OHA), 3,3'-dithiobis-(propionohydrazide) (DTP) were used as raw materials for the synthesis of hydrogels with excellent properties as carriers for drug release. The hydrogels were prepared by a simple "one-pot" method without external stimuli on the basis of interactions between formed dynamic covalent bonds (imine bonds, acylhydrazone bonds, disulfide bonds) and hydrogen bonds. The hydrogels had rapid self-healing properties, with a self-healing rate of 96 % after 30 min, as well as good pH responsiveness and excellent cytocompatibility (up to 98 % cell survival). The compressive stress of the hydrogels reached 423 kPa. Moreover, a representative drug (acetylsalicylic acid) demonstrated sustained release in the hydrogels (>72 h). The drug release behaviour was shown to be consistent with the Fick diffusion mechanism by kinetic modelling. Collectively, the findings demonstrate that the QCMCS + OHA + DTP injectable self-healing hydrogels are a potential material for the construction of pH-controlled drug delivery platforms.


Subject(s)
Chitosan , Hydrogels , Hydrogels/chemistry , Chitosan/chemistry , Hyaluronic Acid/chemistry , Drug Delivery Systems , Imines
4.
Polymers (Basel) ; 15(19)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37835978

ABSTRACT

Along with the increased usage of cellulose in the manufacture of novel materials, those of its derivatives that have good solubility in water or organic solvents have become increasingly important. In this study, hydroxypropyl cellulose (HPC), a cellulosic derivative with distinct features, was utilized to investigate how two of the most-selective oxidation methods currently available in the literature act on the constituent OH groups of both the side chain and the anhydroglycosidic unit in HPC. The oxidation reactions were carried out first using TEMPO, sodium hypochlorite, and sodium bromide, then sodium periodate (NaIO4), for 5 h. A combination of these two protocols was applied. The amount of aldehyde and number of carboxylic groups introduced after oxidation was determined, while the changes in the morphological features of oxidized HPC were, additionally, assessed. Furthermore, utilizing Fourier-transform infrared spectra, X-ray diffraction, and thermogravimetric studies, the chemical structure, crystallinity, and thermal stability of the oxidized HPC samples were examined and compared.

5.
Int J Biol Macromol ; 249: 125801, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37442509

ABSTRACT

Injectable hydrogels with notable mechanical properties and self-healing ability are promising carriers for use as a drug delivery system. Here, adipic acid dihydrazide (ADH) and calcium ions (Ca2+) were introduced into quaternary ammonium carboxymethyl chitosan and aldehyde-modified hyaluronic acid hydrogels (QCS + OHA). The hydrogels were synthesized through the interaction of the Schiff bases (imine bonds, acylhydrazone bonds) and coordination bonds via a facile one-step approach. The gelation time (∼54 s) ensured excellent injectability. The QCS + OHA + ADH + Ca2+ hydrogel had notable mechanical properties (compressive stress up to 896.30 KPa), good self-healing ability (up to 94 %), good pH responsiveness, and excellent antibacterial properties. In addition, the QCS + OHA + ADH + Ca2+ hydrogel had a high drug loading capacity (121.3 mg/g) and sustained drug release behaviour (≥120 h). The results of cytotoxicity tests showed a high cell proliferation rate (up to 98 %) and good cytocompatibility. In summary, this work presents an injectable and self-healing pH-responsive hydrogel that can be used as a carrier for drug delivery systems.


Subject(s)
Chitosan , Chitosan/chemistry , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Drug Delivery Systems , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
6.
Int J Biol Macromol ; 247: 125810, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37453630

ABSTRACT

Fuel cells are electrochemical, ecologically friendly appliances that transform chemical energy into electricity in a clean, simple, and effective manner. With the advancement of technology in the field of computer science, electronic downsizing, and the ongoing need for mobility, the demand for portable energy sources such as fuel cells has considerably increased. The proton exchange membrane, which is designed to be a good conductor for protons while isolating electrons to move from the anode to the cathode, imprinting them an external circuit, and thus creating electricity, is at the heart of such an energy source. Perfluorosulfonic acid-based (NAFION) membranes, first introduced over 50 years ago, are still the state of the art in the field of fuel cell proton exchange membranes today. However, because of the numerous drawbacks connected with the usage of NAFION membranes, the scientific community has shifted its focus to producing new generation membranes based on natural materials, such as cellulose. Therefore, we believe that a review of the most recent studies on the use of cellulose as a material for proton exchange membranes in fuel cells may be very much appreciated by the scientific community.


Subject(s)
Cellulose , Protons , Fluorocarbon Polymers , Electricity
7.
Int J Mol Sci ; 24(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36834710

ABSTRACT

Modifying the surface of nanomaterials, such as carbon nanotubes, by introducing heteroatoms or larger functional groups into the structure causes a change in chemical properties-manifested in the increase in reactivity as well as a change in conductivity. This paper presents the new selenium derivatives obtained by a covalent functionalization of brominated multi-walled carbon nanotubes (MWCNTs). The synthesis was carried out in mild conditions (3 days at room temperature), and was additionally assisted with ultrasound. After a two-stage purification, the obtained products were identified and characterized by the following methods: scanning and transmission electron microscopy imaging (SEM and TEM), energy dispersive X-ray microanalysis (EDX), X-ray photoelectron spectroscopy (XPS), Raman and nuclear magnetic resonance (NMR), and X-ray diffraction (XRD). In the selenium derivatives of carbon nanotubes, the content of selenium and phosphorus reached 14 and 4.2 wt%, respectively.


Subject(s)
Nanotubes, Carbon , Selenium , Nanotubes, Carbon/chemistry , Electron Probe Microanalysis
8.
Carbohydr Polym ; 300: 120243, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36372478

ABSTRACT

Biomedical materials are in high demand for transplantation in cases of diseased or damaged bone tissue. Hydrogels are potential candidates for bone defect repair; however, traditional hydrogels lack the necessary strength and multiple functions. Herein, we effectively synthesized a cellulose nanofiber (CNF)-reinforced oxidized alginate (OSA)/gelatin (Gel) semi-interpenetrating network hydrogel through a facile one-step approach without a cross-linker by using the synergistic effects of dynamic imine bonds and hydrogen bonds. The OSA/Gel/CNF sample showed a notable compressive modulus (up to 361.3 KPa). The gelation time (~150 s) ensured excellent injectability. Self-healing exhibited a high efficiency of up to 92 %, which would enable minimally invasive, dynamic adjustments and personalized therapies. Furthermore, the OSA/Gel/CNF hydrogel showed excellent biomineralization (Ca/P ratio ~ 1.69) and enhanced preosteoblast cell (MC3T3-E1) viability (over 96 %), proliferation, and osteogenic differentiation. Thus, this multifunctional hydrogel has promising potential for using in the bone tissue repairs.


Subject(s)
Nanofibers , Osteogenesis , Humans , Alginates/chemistry , Cellulose/pharmacology , Gelatin/chemistry , Hydrogels/pharmacology , Hydrogels/chemistry
9.
Gels ; 8(12)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36547302

ABSTRACT

Chitosan is quite a unique polysaccharide due to the presence of the amine groups naturally occurring in its structure. This feature renders it into a polycation which makes it appealing for preparing polyelectrolyte complexes or imine bonds gels. Therefore, the vast majority of hydrogels prepared using Schiff base chemistry have chitosan as one component. Usually, the counterpart is a low molecular weight aldehyde or a macromolecular periodate-oxidized polysaccharide, i.e., cellulose, pullulan, starch, alginate, hyaluronic acid, etc. Indisputable advantages of hydrogels include their quick gelation, no need for crosslinking agents, and self-healing and injectability properties. This gives grounds for further research, both fundamental in materials science and applicative in various domains. This article is a critical assessment of the most relevant aspects of this topic. It also provides a short review of some of the most interesting research reported in the literature supporting the main observations of this perspective.

10.
Gels ; 8(11)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36354634

ABSTRACT

The impetus for research into hydrogels based on selectively oxidized polysaccharides has been stimulated by the diversity of potential biomedical applications. Towards the development of a hemostatic wound dressing in this study, we creatively combined the (hemi)acetal and Schiff base bonds to prepare a series of multifunctional cryogels based on dialdehyde pullulan and dopamine. The designed structures were verified by NMR and FTIR spectroscopy. Network parameters and dynamic sorption studies were correlated with environmental scanning microscopy results, thus confirming the successful integration of the two components and the opportunities for finely tuning the structure-properties balance. The viscoelastic parameters (storage and loss moduli, complex and apparent viscosities, zero shear viscosity, yield stress) and the structural recovery capacity after applying a large deformation were determined and discussed. The mechanical stability and hemostatic activity suggest that the optimal combination of selectively oxidized pullulan and dopamine can be a promising toolkit for wound management.

11.
Biotechnol Adv ; 61: 108056, 2022 12.
Article in English | MEDLINE | ID: mdl-36349602

ABSTRACT

In the biomedical field, researchers are always looking for novel materials with improved qualities that may be used in a variety of applications, including pharmaceutical formulations, drug targeting, MRI, drug delivery systems, prostheses, theranostic, and tissue engineering scaffolds. Despite the undeniable traits of the synthetic polymers, such as their reproducible structure and controlled molecular weight, degradation, and mechanical properties, they typically lack biologically relevant bioactivity, biodegradability, and biocompatibility, which are critical aspects in medicine. It is well acknowledged that materials produced from natural resources, such as polysaccharides, have significant benefits over manufactured materials. These advantages stem not just from polysaccharides' inherent abundance in nature, but also from the fact that their structure is comparable to that of extracellular matrix components. This remarkable property has several advantages in terms of biocompatibility and bioactivity, as the human body readily absorbs natural polymers. We strive to update the most recent results in the field of biomaterials including the usage of primary polysaccharides and their derivatives in this study. Polysaccharides such as (i) cellulose, (ii) chitosan, (iii) pullulan, and (iv) starch are given special attention, although a few additional polysaccharides are briefly discussed as well. Because polysaccharides may not always match the requirements for biological use in their natural state, chemical derivatization is frequently employed to transform them. As a result, the above-mentioned polysaccharides, as well as their derivatives, are examined in terms of their chemical and biological peculiarities.


Subject(s)
Biomedical Technology , Polymers , Humans , Cellulose , Drug Delivery Systems , Starch
12.
Molecules ; 27(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36235217

ABSTRACT

The aim of this study was to synthesize silver nanoparticles (AgNPs) using cellulose derivatives and to evaluate their antimicrobial potential. As effective reducing and stabilizing agents for AgNPs, cellulose derivatives, such as hydroxypropyl cellulose (HPC), methylcellulose (MC), ethylcellulose (EC), and cellulose acetate (CA), were used. Their ability to reduce silver ions as well as the size of the resulting AgNPs were compared. The formation and stability of the reduced AgNPs in the solution were monitored using UV-Vis analysis. The size, morphology, and charge of the AgNPs were evaluated. We found that, when using cellulosic derivatives, AgNPs with sizes ranging from 17 to 89 nm and different stabilities were obtained. The parameters, such as size and ζ potential indicate the stability of AgNPs, with AgNPs-CA and AgNPs-HPC being considered more stable than AgNPs-EC and AgNPs-MC since they show higher ζ potential values. In addition, the AgNPs showed antimicrobial activity against all reference strains and clinical isolates. MIC values between 0.0312 and 0.125 mM had a bactericidal effect on both Gram-positive and Gram-negative bacteria. The fungicidal effect was obtained at a MIC value of 0.125 mM. These results may provide rational support in the design of medical gauze products, including gauze pads, rolls, and sponges.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Anti-Bacterial Agents/pharmacology , Antifungal Agents , Cellulose , Escherichia coli , Excipients , Gram-Negative Bacteria , Gram-Positive Bacteria , Methylcellulose , Microbial Sensitivity Tests , Silver/pharmacology
13.
Int J Biol Macromol ; 222(Pt A): 736-749, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36174862

ABSTRACT

For environmental preservation, it is crucial to effectively remove organic waste from water. Several approaches have been put forth, but photocatalysis stands out as a quick and effective solution. In this study, some hybrid polymeric structures that were created by photopolymerizing cellulose acetate/castor oil urethane methacrylates with embedded CeO2 nanoparticles (NPs) and in situ photogenerated noble metal nanoparticles (Ag, Au, Pd) are characterized, and photochemically thoroughly evaluated. The effective modification of cellulose acetate with urethane methacrylate sequences and the degree of functionalization were first observed using 1H NMR and FTIR spectra. Additionally, scanning and transmission electron microscopy, X-ray diffraction, FT-IR and UV-visible spectroscopy were utilized to analyse the resultant nanocomposites. The homogeneous dispersion of CeO2 NPs (10-40 nm) into an organic matrix with the suitable functionalities, namely urethane and hydroxyl groups, favour the interfacial charge transfer reducing the Eg up to 2.85 eV. Moreover, noble metal nanoparticles (5-15 nm), such as Ag, Au and Pd introduction in nanocomposites, significantly lowered the Eg: 2.1 eV for CeAg samples, 1.7 eV for CeAu films and 1.5 eV for CePd films, respectively. This opens up new avenues for the creation of flexible cellulose-based photocatalysts that are active in visible light.


Subject(s)
Metal Nanoparticles , Spectroscopy, Fourier Transform Infrared , Metal Nanoparticles/chemistry , Light , Cellulose/chemistry , Urethane
14.
Materials (Basel) ; 15(17)2022 Sep 02.
Article in English | MEDLINE | ID: mdl-36079467

ABSTRACT

The C-6 in the maltotriose unit of pullulan was oxidized in an alkaline medium (pH = 10), utilizing a green method that included hydrogen peroxide (H2O2) as an oxidant and N-hydroxyphthalimide (NHPI) as a catalyst for various reaction times. The structure of the resulting oxidized pullulans (PO) was carefully characterized by titration, intrinsic viscosity, FTIR, 13C-NMR, and zeta potential. The content of carboxyl groups in PO was dependent on reaction time and varied accordingly. Furthermore, a fast reaction rate was found in the first 2-3 h of the reaction, followed by a decreased rate in the subsequent hours. FTIR and 13C-NMR proved that the selective oxidation of the primary alcohol groups of pullulan was achieved. The oxidation also caused the glycoside linkages in the pullulan chain to break, and the viscosity of the pullulan itself went down.

15.
Materials (Basel) ; 15(14)2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35888547

ABSTRACT

Raw cellulose, or even agro-industrial waste, have been extensively used for environmental applications, namely industrial water decontamination, due to their effectiveness, availability, and low production cost. This was a response to the increasing societal demand for fresh water, which made the purification of wastewater one of the major research issue for both academic and industrial R&D communities. Cellulose has undergone various derivatization reactions in order to change the cellulose surface charge density, a prerequisite condition to delaminate fibers down to nanometric fibrils through a low-energy process, and to obtain products with various structures and properties able to undergo further processing. Selective oxidation of cellulose, one of the most important methods of chemical modification, turned out to be a multitask platform to obtain new high-performance, versatile, cellulose-based materials, with many other applications aside from the environmental ones: in biomedical engineering and healthcare, energy storage, barrier and sensing applications, food packaging, etc. Various methods of selective oxidation have been studied, but among these, (2,2,6,6-tetramethylpiperidin-1-yl)oxyl) (TEMPO)-mediated and periodate oxidation reactions have attracted more interest due to their enhanced regioselectivity, high yield and degree of substitution, mild conditions, and the possibility to further process the selectively oxidized cellulose into new materials with more complex formulations. This study systematically presents the main methods commonly used for the selective oxidation of cellulose and provides a survey of the most recent reports on the environmental applications of oxidized cellulose, such as the removal of heavy metals, dyes, and other organic pollutants from the wastewater.

16.
Materials (Basel) ; 14(22)2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34832441

ABSTRACT

Steady developments made in nanotechnology-based products have facilitated new perspectives for combating drug-resistant fungi. Silver nanoparticles represent one of the most attractive nanomaterials in biomedicine due to their exclusive optical, electromagnetic, and catalytic properties and antifungal potency compared with other metal nanoparticles. Most studies show that the physicochemical parameters affecting the antifungal potential of AgNPs include the shape, size, surface charge, and concentration and colloidal state. For the present study, pullulan (P) and its oxidized counterpart (PO) have been selected as matrices for the silver nanoparticles' generation and stabilization (AgNPs). The TEMPO (2,2,6,6-tetramethylpiperidin-1-yl radical)-sodium hypochlorite-sodium bromide system was used for the C6 selective oxidation of pullulan in order to introduce negatively charged carboxylic groups in its structure. The structure and morphology of the synthesized AgNPs were analyzed using FTIR and EDX. The main objective of this study was to elucidate the antifungal activity of AgNPs on the clinical yeasts isolates and compare the performance of AgNPs with the conventional antifungals. In this study, different concentrations of AgNPs were tested to examine antifungal activity on various clinical isolates.

17.
Materials (Basel) ; 14(13)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34279302

ABSTRACT

Exposure to different arsenic concentrations (higher than 10 µg/L), either due to the direct consumption of contaminated drinking water or indirectly by using contaminated food is harmful for human health. Therefore, it is important to remove arsenic from aqueous solutions. Among many arsenic removal technologies, adsorption offers a promising solution with a good efficiency, however the material used as adsorbent play a very vital role. The present investigation evaluated the behavior of two cellulose-based adsorbent materials, i.e., viscose fibers (V) and its TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) derivative, obtained by using the well-established TEMPO-mediated protocol (VF). Due to the known arsenic affinity for Fe ions the two materials were later doped with it. This was done after a preliminary functionalization with di-2-ethylhexyl phosphoric acid (DEHPA), to obtain two materials: V-DEHPA-Fe and VF-DEHPA-Fe. Arsenic adsorption is known to be pH dependent (between 6 and 8); therefore, the optimal pH range for As(V) adsorption has been established. In order to evaluate the adsorption mechanism for both the synthesized materials, the influence of contact time, temperature and initial concentration was evaluated. Langmuir, Freundlich and Sips equilibrium isotherm models were used in order to determine the ability of the model to describe As(V) adsorption process. The maximum adsorption capacity of the material V-DEHPA-Fe was 247.5 µg As(V)/g with an As(V) initial concentration of 5 mg/L and for the material VF-DEHPA-Fe it was 171.2 µg As(V)/g with initial concentration of 5 mg/L.

18.
Polymers (Basel) ; 13(11)2021 May 22.
Article in English | MEDLINE | ID: mdl-34067311

ABSTRACT

Magnetic hydrogels composed of poly(vinyl alcohol) (PVA)/water-soluble tricarboxy cellulose (CO)/magnetic fluids (MFs) have been prepared by a freeze-thaw cycle technique. The system designed here combines the renewability and biocompatibility aspects of PVA and CO, as well as the magnetic properties of MFs, thereby offering special properties to the final product with potential applications in medicine. In the first step, the water-soluble CO is synthesized using a one-shot oxidation procedure and then the aqueous solutions of CO are mixed with PVA solutions and magnetic fluids in the absence of any additional cross-linking agent. The magnetic hydrogels were thoroughly investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), magnetometry (VSM), and thermogravimetric analysis. The morphological results show an excellent distribution of magnetic particles and CO inside the PVA matrix. The VSM results show that the magnetic hydrogels possess superparamagnetic properties.

19.
Int J Biol Macromol ; 181: 1047-1062, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-33895174

ABSTRACT

The present work reports a versatile approach to the manufacture of chitosan beads with tunable pore size and targeted properties. To achieve this, the as prepared chitosan beads were allowed to interact with aqueous solutions of two types of oxidized pullulan derivatives. Depending on the functional groups present on the pullulan structure after oxidation, i.e., carboxyl or aldehyde, covalent or physical hybrid hydrogels could be prepared. The attachment of oxidized pullulan onto chitosan structure was checked by FTIR, RMN, XPS and thermal analysis. The morphology of the hybrid structures was evaluated by using Scanning Electron Microscopy (SEM). After structural evaluations, all the prepared hydrogels were characterized by means of dynamic vapor sorption and swelling degree studies, exhibiting a Case-II swelling mechanism. Drug model compounds, such as ibuprofen, bacitracin and neomycin were used for drug loading and release assays, proving high drug loading capacity and tunable release behavior. Drug loaded beads exhibited antibacterial activity and hemocompatibility experiments indicated no coagulation phenomena.


Subject(s)
Drug Delivery Systems , Glucans/pharmacology , Hydrogels/chemistry , Polysaccharides/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Drug Carriers/chemistry , Drug Carriers/pharmacology , Drug Compounding , Glucans/chemistry , Humans , Hydrogels/pharmacology , Microspheres , Oxidation-Reduction , Spectroscopy, Fourier Transform Infrared
20.
Polymers (Basel) ; 13(5)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33668896

ABSTRACT

In the current global context, cellulose fulfills those characteristics that give it clear advantages over synthetic fibers, having a huge potential for substituting fossil-based materials which are polluting and harmful to ecosystems. Research conducted in most laboratories around the world in the field of cellulose is overwhelmingly aimed at industrial needs because features such as renewability and low cost are the most important attributes for economic success. In this global effort, Romanian researchers contribute through achievements that are briefly reviewed in this paper. These refer to the main achievements reported after 2000 in the field of cellulose characterization and cellulose functionalization, as well as the main areas where cellulose-based materials were applied.

SELECTION OF CITATIONS
SEARCH DETAIL
...