Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
MAbs ; 4(6): 710-23, 2012.
Article in English | MEDLINE | ID: mdl-23007574

ABSTRACT

The c-Met proto-oncogene is a multifunctional receptor tyrosine kinase that is stimulated by its ligand, hepatocyte growth factor (HGF), to induce cell growth, motility and morphogenesis. Dysregulation of c-Met function, through mutational activation or overexpression, has been observed in many types of cancer and is thought to contribute to tumor growth and metastasis by affecting mitogenesis, invasion, and angiogenesis. We identified human monoclonal antibodies that bind to the extracellular domain of c-Met and inhibit tumor growth by interfering with ligand-dependent c-Met activation. We identified antibodies representing four independent epitope classes that inhibited both ligand binding and ligand-dependent activation of c-Met in A549 cells. In cells, the antibodies antagonized c-Met function by blocking receptor activation and by subsequently inducing downregulation of the receptor, translating to phenotypic effects in soft agar growth and tubular morphogenesis assays. Further characterization of the antibodies in vivo revealed significant inhibition of c-Met activity (≥ 80% lasting for 72-96 h) in excised tumors corresponded to tumor growth inhibition in multiple xenograft tumor models. Several of the antibodies identified inhibited the growth of tumors engineered to overexpress human HGF and human c-Met (S114 NIH 3T3) when grown subcutaneously in athymic mice. Furthermore, lead candidate antibody CE-355621 inhibited the growth of U87MG human glioblastoma and GTL-16 gastric xenografts by up to 98%. The findings support published pre-clinical and clinical data indicating that targeting c-Met with human monoclonal antibodies is a promising therapeutic approach for the treatment of cancer.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Proto-Oncogene Proteins c-met/immunology , Animals , Carcinogenesis/drug effects , Carcinogenesis/immunology , Cell Growth Processes/drug effects , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/immunology , Hepatocyte Growth Factor/metabolism , Humans , Immunodominant Epitopes/immunology , Mice , Mice, Nude , Morphogenesis/drug effects , NIH 3T3 Cells , Proto-Oncogene Mas , Proto-Oncogene Proteins c-met/genetics , Transgenes/genetics , Xenograft Model Antitumor Assays
2.
J Histochem Cytochem ; 57(10): 933-49, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19506089

ABSTRACT

Phosphodiesterases (PDEs) comprise a family of enzymes that regulate the levels of cyclic nucleotides, key second messengers that mediate a diverse array of functions. PDE2A is an evolutionarily conserved cGMP-stimulated cAMP and cGMP PDE. In the present study, the regional and cellular distribution of PDE2A in tissues of rats, mice, cynomolgus monkeys, dogs, and humans was evaluated by immunohistochemistry. A polyclonal antibody directed to the C-terminal portion of PDE2A specifically detected PDE2A by Western blotting and by immunohistochemistry. The pattern of PDE2A immunoreactivity (ir) was consistent across all species. Western blot analysis demonstrated that PDE2A was most abundant in the brain relative to peripheral tissues. PDE2A ir was heterogeneously distributed within brain and was selectively expressed in particular peripheral tissues. In the brain, prominent immunoreactivity was apparent in components of the limbic system, including the isocortex, hippocampus, amygdala, habenula, basal ganglia, and interpeduncular nucleus. Cytoplasmic PDE2A staining was prominent in several peripheral tissues, including the adrenal zona glomerulosa, neurons of enteric ganglia, endothelial cells in all organs, lymphocytes of spleen and lymph nodes, and pituitary. These studies suggest that PDE2A is evolutionarily conserved across mammalian species and support the hypothesis that the enzyme plays a fundamental role in signal transduction.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 2/biosynthesis , Animals , Blotting, Western , Brain/anatomy & histology , Brain/enzymology , Cyclic Nucleotide Phosphodiesterases, Type 2/genetics , Dogs , Ganglia, Spinal/anatomy & histology , Ganglia, Spinal/enzymology , Humans , Immunohistochemistry , In Situ Hybridization , Macaca fascicularis , Mice , Mice, Knockout , Organ Specificity , Rats , Rats, Sprague-Dawley , Species Specificity , Spinal Cord/anatomy & histology , Spinal Cord/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...