Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Bioinformatics ; 40(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38775729

ABSTRACT

MOTIVATION: Today, we know the function of only a small fraction of the protein sequences predicted from genomic data. This problem is even more salient for bacteria, which represent some of the most phylogenetically and metabolically diverse taxa on Earth. This low rate of bacterial gene annotation is compounded by the fact that most function prediction algorithms have focused on eukaryotes, and conventional annotation approaches rely on the presence of similar sequences in existing databases. However, often there are no such sequences for novel bacterial proteins. Thus, we need improved gene function prediction methods tailored for bacteria. Recently, transformer-based language models-adopted from the natural language processing field-have been used to obtain new representations of proteins, to replace amino acid sequences. These representations, referred to as protein embeddings, have shown promise for improving annotation of eukaryotes, but there have been only limited applications on bacterial genomes. RESULTS: To predict gene functions in bacteria, we developed SAFPred, a novel synteny-aware gene function prediction tool based on protein embeddings from state-of-the-art protein language models. SAFpred also leverages the unique operon structure of bacteria through conserved synteny. SAFPred outperformed both conventional sequence-based annotation methods and state-of-the-art methods on multiple bacterial species, including for distant homolog detection, where the sequence similarity to the proteins in the training set was as low as 40%. Using SAFPred to identify gene functions across diverse enterococci, of which some species are major clinical threats, we identified 11 previously unrecognized putative novel toxins, with potential significance to human and animal health. AVAILABILITY AND IMPLEMENTATION: https://github.com/AbeelLab/safpred.


Subject(s)
Algorithms , Bacterial Proteins , Genome, Bacterial , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Software , Bacteria/genetics , Synteny , Computational Biology/methods , Molecular Sequence Annotation/methods
2.
bioRxiv ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37205418

ABSTRACT

Motivation: Today, we know the function of only a small fraction of the protein sequences predicted from genomic data. This problem is even more salient for bacteria, which represent some of the most phylogenetically and metabolically diverse taxa on Earth. This low rate of bacterial gene annotation is compounded by the fact that most function prediction algorithms have focused on eukaryotes, and conventional annotation approaches rely on the presence of similar sequences in existing databases. However, often there are no such sequences for novel bacterial proteins. Thus, we need improved gene function prediction methods tailored for prokaryotes. Recently, transformer-based language models - adopted from the natural language processing field - have been used to obtain new representations of proteins, to replace amino acid sequences. These representations, referred to as protein embeddings, have shown promise for improving annotation of eukaryotes, but there have been only limited applications on bacterial genomes. Results: To predict gene functions in bacteria, we developed SAP, a novel synteny-aware gene function prediction tool based on protein embeddings from state-of-the-art protein language models. SAP also leverages the unique operon structure of bacteria through conserved synteny. SAP outperformed both conventional sequence-based annotation methods and state-of-the-art methods on multiple bacterial species, including for distant homolog detection, where the sequence similarity to the proteins in the training set was as low as 40%. Using SAP to identify gene functions across diverse enterococci, of which some species are major clinical threats, we identified 11 previously unrecognized putative novel toxins, with potential significance to human and animal health.

3.
Gigascience ; 122022 Dec 28.
Article in English | MEDLINE | ID: mdl-38000912

ABSTRACT

BACKGROUND: Assembly algorithm choice should be a deliberate, well-justified decision when researchers create genome assemblies for eukaryotic organisms from third-generation sequencing technologies. While third-generation sequencing by Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio) has overcome the disadvantages of short read lengths specific to next-generation sequencing (NGS), third-generation sequencers are known to produce more error-prone reads, thereby generating a new set of challenges for assembly algorithms and pipelines. However, the introduction of HiFi reads, which offer substantially reduced error rates, has provided a promising solution for more accurate assembly outcomes. Since the introduction of third-generation sequencing technologies, many tools have been developed that aim to take advantage of the longer reads, and researchers need to choose the correct assembler for their projects. RESULTS: We benchmarked state-of-the-art long-read de novo assemblers to help readers make a balanced choice for the assembly of eukaryotes. To this end, we used 12 real and 64 simulated datasets from different eukaryotic genomes, with different read length distributions, imitating PacBio continuous long-read (CLR), PacBio high-fidelity (HiFi), and ONT sequencing to evaluate the assemblers. We include 5 commonly used long-read assemblers in our benchmark: Canu, Flye, Miniasm, Raven, and wtdbg2 for ONT and PacBio CLR reads. For PacBio HiFi reads , we include 5 state-of-the-art HiFi assemblers: HiCanu, Flye, Hifiasm, LJA, and MBG. Evaluation categories address the following metrics: reference-based metrics, assembly statistics, misassembly count, BUSCO completeness, runtime, and RAM usage. Additionally, we investigated the effect of increased read length on the quality of the assemblies and report that read length can, but does not always, positively impact assembly quality. CONCLUSIONS: Our benchmark concludes that there is no assembler that performs the best in all the evaluation categories. However, our results show that overall Flye is the best-performing assembler for PacBio CLR and ONT reads, both on real and simulated data. Meanwhile, best-performing PacBio HiFi assemblers are Hifiasm and LJA. Next, the benchmarking using longer reads shows that the increased read length improves assembly quality, but the extent to which that can be achieved depends on the size and complexity of the reference genome.


Subject(s)
Genome , Nanopores , Sequence Analysis, DNA/methods , Algorithms , High-Throughput Nucleotide Sequencing/methods
SELECTION OF CITATIONS
SEARCH DETAIL