Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 931: 173006, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38710389

ABSTRACT

The rise in sea level and land subsidence are seriously threatening the diversity of tidal morphologies that have made the Venice Lagoon such a distinctive landscape. Here, we assess the vulnerability of tidal morphologies to relative sea-level rise based on a new conceptual framework that accounts for both above- and below-sea-level zones, sedimentary architecture, and surface morphology. Around 80 % of the lagoon area will face moderate to severe vulnerability by 2050, doubling compared to the 1990s. While the subtidal zone may be relatively less threatened compared to past conditions, the drastic decline in intertidal morphologies is alarming. This contributes to the flattening and deepening of the lagoon topography and thus to the loss of lagoon landscape diversity, likely leading to a decrease in the ecosystem services the tidal morphologies provide. The interconnection of intertidal and subtidal morphologies is crucial for maintaining the overall health and functionality of the lagoon's ecosystem. Any disruption to one aspect can have ripple effects throughout the entire system.

2.
Sci Total Environ ; 905: 167058, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37709072

ABSTRACT

Groundwater salinization can be natural and anthropogenic in origin, although it often results from a combination of both, especially in low-lying coastal regions that are hydraulically controlled. This study proposes a method to assess the origin of salinity using environmental tracers in porewater, like Cl- and Br-, combined with depositional facies associations detected in sediment cores. Such integrated approach was tested in a target area south of the Venice Lagoon (Italy), where groundwater salinization is triggered by multiple mechanisms due to the complexity of the hydro-geomorphological environment. Batch tests were performed on sediment core samples from boreholes to quantify major anions and total inorganic N. Cl- and Br- porewater concentrations coupled with sedimentary facies association provided insights into the origin of groundwater salinity from a variety of sources, including past and present seawater intrusion, agricultural leaching, and evaporites. The strengths and limitations of the integrated approach are discussed to provide a pathway for improving water resource management and planning measures to prevent groundwater salinization in coastal areas.

SELECTION OF CITATIONS
SEARCH DETAIL
...