Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Neuromodulation ; 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456889

ABSTRACT

OBJECTIVES: After a successful percutaneous cylindrical electrode five-to-seven-day trial of spinal cord stimulation, subsequent permanent surgical paddle lead (SPL) placement can be impeded by epidural scar induced by the trial leads (TLs). Our goal was to determine whether a delay between TL and subsequent SPL placement provokes enhanced epidural scarring with an increased need for laminotomy extension required for scar removal for optimal SPL placement. MATERIALS AND METHODS: Using a prospectively maintained data base, a single-facility/surgeon retrospective study identified 261 patients with newly placed thoracolumbar SPLs from June 2013 to November 2023. Data were obtained from the patients' charts, including, but not limited to, timing between TL and SPL, operative time, and need for extension of laminotomy. RESULTS: We found that the need for laminotomy extension due to TL epidural scarring and longer operative times was not required in our patients if the SPL was placed within ten days of placement of the TL (0/26), leading to shorter operative times in those with SPL placed after ten days (122.42 ± 10.72 minutes vs 140.75 ± 4.72 minutes; p = 0.005). We found no association with other medical comorbidities that may be confounding factors leading to epidural scarring/extension of laminotomy or association with level of SPL placement, size of the spinal canal, or indication for SPL placement. CONCLUSIONS: TL placement leads to scarring in the epidural space that appears to mature after ten days of its placement. In approximately 34% of patients, this leads to prolonged operative time owing to the need for extension of laminotomy and subsequent clearing of epidural scar for optimal SPL placement.

2.
Front Oncol ; 12: 1066191, 2022.
Article in English | MEDLINE | ID: mdl-36561526

ABSTRACT

Background: Pulsed low-dose-rate radiotherapy (pLDR) is a commonly used reirradiation technique for recurrent glioma, but its upfront use with temozolomide (TMZ) following primary resection of glioblastoma is currently under investigation. Because standard magnetic resonance imaging (MRI) has limitations in differentiating treatment effect from tumor progression in such applications, perfusion-weighted MRI (PWI) can be used to create fractional tumor burden (FTB) maps to spatially distinguish active tumor from treatment-related effect. Methods: We performed PWI prior to re-resection in four patients with glioblastoma who had undergone upfront pLDR concurrent with TMZ who had radiographic suspicion for tumor progression at a median of 3 months (0-5 months or 0-143 days) post-pLDR. The pathologic diagnosis was compared to retrospectively-generated FTB maps. Results: The median patient age was 55.5 years (50-60 years). All were male with IDH-wild type (n=4) and O6-methylguanine-DNA methyltransferase (MGMT) hypermethylated (n=1) molecular markers. Pathologic diagnosis revealed treatment effect (n=2), a mixture of viable tumor and treatment effect (n=1), or viable tumor (n=1). In 3 of 4 cases, FTB maps were indicative of lesion volumes being comprised predominantly of treatment effect with enhancing tumor volumes comprised of a median of 6.8% vascular tumor (6.4-16.4%). Conclusion: This case series provides insight into the radiographic response to upfront pLDR and TMZ and the role for FTB mapping to distinguish tumor progression from treatment effect prior to redo-surgery and within 20 weeks post-radiation.

3.
Brain Pathol ; 32(4): e13037, 2022 07.
Article in English | MEDLINE | ID: mdl-34821426

ABSTRACT

'Intracranial mesenchymal tumor, FET-CREB fusion-positive' occurs primarily in children and young adults and has previously been termed intracranial angiomatoid fibrous histiocytoma (AFH) or intracranial myxoid mesenchymal tumor (IMMT). Here we performed genome-wide DNA methylation array profiling of 20 primary intracranial mesenchymal tumors with FET-CREB fusion to further study their ontology. These tumors resolved into two distinct epigenetic subgroups that were both divergent from all other analyzed intracranial neoplasms and soft tissue sarcomas, including meningioma, clear cell sarcoma of soft tissue (CCS), and AFH of extracranial soft tissue. The first subgroup (Group A, 16 tumors) clustered nearest to but independent of solitary fibrous tumor and AFH of extracranial soft tissue, whereas the second epigenetic subgroup (Group B, 4 tumors) clustered nearest to but independent of CCS and also lacked expression of melanocytic markers (HMB45, Melan A, or MITF) characteristic of CCS. Group A tumors most often occurred in adolescence or early adulthood, arose throughout the neuroaxis, and contained mostly EWSR1-ATF1 and EWSR1-CREB1 fusions. Group B tumors arose most often in early childhood, were located along the cerebral convexities or spinal cord, and demonstrated an enrichment for tumors with CREM as the fusion partner (either EWSR1-CREM or FUS-CREM). Group A tumors more often demonstrated stellate/spindle cell morphology and hemangioma-like vasculature, whereas Group B tumors more often demonstrated round cell or epithelioid/rhabdoid morphology without hemangioma-like vasculature, although robust comparison of these clinical and histologic features requires future study. Patients with Group B tumors had inferior progression-free survival relative to Group A tumors (median 4.5 vs. 49 months, p = 0.001). Together, these findings confirm that intracranial AFH-like neoplasms and IMMT represent histologic variants of a single tumor type ('intracranial mesenchymal tumor, FET-CREB fusion-positive') that is distinct from meningioma and extracranial sarcomas. Additionally, epigenomic evaluation may provide important prognostic subtyping for this unique tumor entity.


Subject(s)
Brain Neoplasms , Hemangioma , Histiocytoma, Malignant Fibrous , Meningeal Neoplasms , Meningioma , Soft Tissue Neoplasms , Adolescent , Adult , Biomarkers, Tumor/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Child , Child, Preschool , Epigenesis, Genetic , Epigenomics , Hemangioma/genetics , Histiocytoma, Malignant Fibrous/genetics , Humans , Meningeal Neoplasms/genetics , Meningioma/genetics , Oncogene Proteins, Fusion/genetics , RNA-Binding Protein EWS/genetics , Soft Tissue Neoplasms/genetics , Soft Tissue Neoplasms/pathology , Young Adult
4.
Am J Forensic Med Pathol ; 42(2): 182-185, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33074840

ABSTRACT

ABSTRACT: Resorbable topical hemostatic agents are widely used in surgical procedures to control intraoperative bleeding. There have been multiple reports of complications from use of these agents, including pulmonary vasculature thromboembolism, cerebral venous sinus occlusion, and postoperative inflammatory mass lesions each containing the hemostatic agent. We report 2 cases of inadvertent intra-arterial embolization of hemostatic agent. Both cases followed elective surgical cervical spinal procedures, during which gelatin-based local hemostatic agents were used to control unanticipated bleeding. Postoperatively, both patients exhibited neurologic defects and were found to have infarcts of the brain. At autopsy, vertebrobasilar thromboemboli containing foreign material grossly and microscopically consistent with hemostatic matrix material were found in both cases. These are the first reports of hemostatic agent embolization resulting in cerebral infarcts and leading to death.


Subject(s)
Cerebral Infarction/pathology , Hemostatics/adverse effects , Intracranial Embolism/pathology , Administration, Topical , Adult , Cerebral Infarction/diagnostic imaging , Computed Tomography Angiography , Fatal Outcome , Female , Gelatin Sponge, Absorbable/administration & dosage , Gelatin Sponge, Absorbable/adverse effects , Hemostatics/administration & dosage , Humans , Intracranial Embolism/etiology , Male , Middle Aged , Vertebrobasilar Insufficiency/etiology , Vertebrobasilar Insufficiency/pathology
5.
Brain Pathol ; 31(4): e12918, 2021 07.
Article in English | MEDLINE | ID: mdl-33141488

ABSTRACT

Intracranial mesenchymal tumors with FET-CREB fusions are a recently described group of neoplasms in children and young adults characterized by fusion of a FET family gene (usually EWSR1, but rarely FUS) to a CREB family transcription factor (ATF1, CREB1, or CREM), and have been variously termed intracranial angiomatoid fibrous histiocytoma or intracranial myxoid mesenchymal tumor. The clinical outcomes, histologic features, and genomic landscape are not well defined. Here, we studied 20 patients with intracranial mesenchymal tumors proven to harbor FET-CREB fusion by next-generation sequencing (NGS). The 16 female and four male patients had a median age of 14 years (range 4-70). Tumors were uniformly extra-axial or intraventricular and located at the cerebral convexities (n = 7), falx (2), lateral ventricles (4), tentorium (2), cerebellopontine angle (4), and spinal cord (1). NGS demonstrated that eight tumors harbored EWSR1-ATF1 fusion, seven had EWSR1-CREB1, four had EWSR1-CREM, and one had FUS-CREM. Tumors were uniformly well circumscribed and typically contrast enhancing with solid and cystic growth. Tumors with EWSR1-CREB1 fusions more often featured stellate/spindle cell morphology, mucin-rich stroma, and hemangioma-like vasculature compared to tumors with EWSR1-ATF1 fusions that most often featured sheets of epithelioid cells with mucin-poor collagenous stroma. These tumors demonstrated polyphenotypic immunoprofiles with frequent positivity for desmin, EMA, CD99, MUC4, and synaptophysin, but absence of SSTR2A, myogenin, and HMB45 expression. There was a propensity for local recurrence with a median progression-free survival of 12 months and a median overall survival of greater than 60 months, with three patients succumbing to disease (all with EWSR1-ATF1 fusions). In combination with prior case series, this study provides further insight into intracranial mesenchymal tumors with FET-CREB fusion, which represent a distinct group of CNS tumors encompassing both intracranial myxoid mesenchymal tumor and angiomatoid fibrous histiocytoma-like neoplasms.


Subject(s)
Brain Neoplasms/pathology , Histiocytoma, Benign Fibrous/pathology , Histiocytoma, Malignant Fibrous/pathology , Oncogene Proteins, Fusion/metabolism , Adolescent , Adult , Aged , Biomarkers, Tumor/genetics , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Child , Child, Preschool , Female , Gene Fusion/genetics , Histiocytoma, Benign Fibrous/diagnosis , Histiocytoma, Benign Fibrous/metabolism , Histiocytoma, Malignant Fibrous/diagnosis , Histiocytoma, Malignant Fibrous/genetics , Humans , Male , Middle Aged , Oncogene Proteins, Fusion/genetics , Young Adult
6.
Proc Natl Acad Sci U S A ; 107(27): 12393-8, 2010 Jul 06.
Article in English | MEDLINE | ID: mdl-20616093

ABSTRACT

Winning aggressive disputes can enhance future fighting ability and the desire to seek out additional contests. In some instances, these effects are long lasting and vary in response to the physical location of a fight. Thus, in principle, winning aggressive encounters may cause long-term and context-dependent changes to brain areas that control the output of antagonistic behavior or the motivation to fight (or both). We examined this issue in the territorial California mouse (Peromyscus californicus) because males of this species are more likely to win fights after accruing victories in their home territory but not after accruing victories in unfamiliar locations. Using immunocytochemistry and real-time quantitative PCR, we found that winning fights either at home or away increases the expression of androgen receptors (AR) in the medial anterior bed nucleus of the stria terminalis, a key brain area that controls social aggression. We also found that AR expression in brain regions that mediate motivation and reward, nucleus accumbens (NAcc) and ventral tegmental area (VTA), increases only in response to fights in the home territory. These effects of winning were likely exclusive to the neural androgenic system because they have no detectible impact on the expression of progestin receptors. Finally, we demonstrated that the observed changes in androgen sensitivity in the NAcc and VTA are positively associated with the ability to win aggressive contests. Thus, winning fights can change brain phenotype in a manner that likely promotes future victory and possibly primes neural circuits that motivate individuals to fight.


Subject(s)
Aggression/physiology , Motivation/physiology , Neural Pathways/physiology , Receptors, Androgen/physiology , Animals , Competitive Behavior/physiology , Dominance-Subordination , Female , Immunohistochemistry , Male , Peromyscus , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Septal Nuclei/metabolism , Social Behavior , Social Environment , Territoriality
SELECTION OF CITATIONS
SEARCH DETAIL
...