Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37582613

ABSTRACT

BACKGROUND AND OBJECTIVES: Up to 50% of patients with myasthenia gravis (MG) without acetylcholine receptor antibodies (AChR-Abs) have antibodies to muscle-specific kinase (MuSK). Most MuSK antibodies (MuSK-Abs) are IgG4 and inhibit agrin-induced MuSK phosphorylation, leading to impaired clustering of AChRs at the developing or mature neuromuscular junction. However, IgG1-3 MuSK-Abs also exist in MuSK-MG patients, and their potential mechanisms have not been explored fully. METHODS: C2C12 myotubes were exposed to MuSK-MG plasma IgG1-3 or IgG4, with or without purified agrin. MuSK, Downstream of Kinase 7 (DOK7), and ßAChR were immunoprecipitated and their phosphorylation levels identified by immunoblotting. Agrin and agrin-independent AChR clusters were measured by immunofluorescence and AChR numbers by binding of 125I-α-bungarotoxin. Transcriptomic analysis was performed on treated myotubes. RESULTS: IgG1-3 MuSK-Abs impaired AChR clustering without inhibiting agrin-induced MuSK phosphorylation. Moreover, the well-established pathway initiated by MuSK through DOK7, resulting in ßAChR phosphorylation, was not impaired by MuSK-IgG1-3 and was agrin-independent. Nevertheless, the AChR clusters did not form, and both the number of AChR microclusters that precede full cluster formation and the myotube surface AChRs were reduced. Transcriptomic analysis did not throw light on the pathways involved. However, the SHP2 inhibitor, NSC-87877, increased the number of microclusters and led to fully formed AChR clusters. DISCUSSION: MuSK-IgG1-3 is pathogenic but seems to act through a noncanonical pathway. Further studies should throw light on the mechanisms involved at the neuromuscular junction.


Subject(s)
Myasthenia Gravis , Receptor Protein-Tyrosine Kinases , Humans , Agrin/pharmacology , Immunoglobulin G , Muscle Proteins/metabolism , Myasthenia Gravis/drug therapy , Phosphorylation , Receptors, Cholinergic
2.
Hum Mol Genet ; 29(14): 2325-2336, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32543656

ABSTRACT

Congenital myasthenic syndromes (CMS) are characterized by fatigable muscle weakness resulting from impaired neuromuscular transmission. ß2-adrenergic agonists are an effective treatment for DOK7-CMS. DOK7 is a component within the AGRN-LRP4-MUSK-DOK7 signalling pathway that is key for the formation and maintenance of the synaptic structure of the neuromuscular junction (NMJ). The precise mechanism of action of ß2-adrenergic agonists at the NMJ is not fully understood. In this study, we investigated whether ß2-adrenergic agonists improve both neurotransmission and structural integrity of the NMJ in a mouse model of DOK7-CMS. Ex-vivo electrophysiological techniques and microscopy of the NMJ were used to study the effect of salbutamol, a ß2-adrenergic agonist, on synaptic structure and function. DOK7-CMS model mice displayed a severe phenotype with reduced weight gain and perinatal lethality. Salbutamol treatment improved weight gain and survival in DOK7 myasthenic mice. Model animals had fewer active NMJs, detectable by endplate recordings, compared with age-matched wild-type littermates. Salbutamol treatment increased the number of detectable NMJs during endplate recording. Correspondingly, model mice had fewer acetylcholine receptor-stained NMJs detected by fluorescent labelling, but following salbutamol treatment an increased number were detectable. The data demonstrate that salbutamol can prolong survival and increase NMJ number in a severe model of DOK7-CMS.


Subject(s)
Albuterol/pharmacology , Muscle Proteins/genetics , Myasthenic Syndromes, Congenital/drug therapy , Neuromuscular Junction/drug effects , Animals , Disease Models, Animal , Female , Humans , Mice , Myasthenic Syndromes, Congenital/genetics , Myasthenic Syndromes, Congenital/pathology , Neuromuscular Junction/metabolism , Pregnancy , Receptors, Cholinergic/genetics , Signal Transduction/drug effects , Synaptic Transmission/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...