Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Retrovirology ; 12: 33, 2015 Apr 29.
Article in English | MEDLINE | ID: mdl-25924841

ABSTRACT

BACKGROUND: The phase II multicenter, randomized, open label, therapeutic trial (ISS T-002, Clinicaltrials.gov NCT00751595) was aimed at evaluating the immunogenicity and the safety of the biologically active HIV-1 Tat protein administered at 7.5 or 30 µg, given 3 or 5 times monthly, and at exploring immunological and virological disease biomarkers. The study duration was 48 weeks, however, vaccinees were followed until the last enrolled subject reached the 48 weeks. Reported are final data up to 144 weeks of follow-up. The ISS T-002 trial was conducted in 11 clinical centers in Italy on 168 HIV positive subjects under Highly Active Antiretroviral Therapy (HAART), anti-Tat Antibody (Ab) negative at baseline, with plasma viremia <50 copies/mL in the last 6 months prior to enrollment, and CD4(+) T-cell number ≥200 cells/µL. Subjects from a parallel observational study (ISS OBS T-002, Clinicaltrials.gov NCT0102455) enrolled at the same clinical sites with the same criteria constituted an external reference group to explore biomarkers of disease. RESULTS: The vaccine was safe and well tolerated and induced anti-Tat Abs in most patients (79%), with the highest frequency and durability in the Tat 30 µg groups (89%) particularly when given 3 times (92%). Vaccination promoted a durable and significant restoration of T, B, natural killer (NK) cells, and CD4(+) and CD8(+) central memory subsets. Moreover, a significant reduction of blood proviral DNA was seen after week 72, particularly under PI-based regimens and with Tat 30 µg given 3 times (30 µg, 3x), reaching a predicted 70% decay after 3 years from vaccination with a half-life of 88 weeks. This decay was significantly associated with anti-Tat IgM and IgG Abs and neutralization of Tat-mediated entry of oligomeric Env in dendritic cells, which predicted HIV-1 DNA decay. Finally, the 30 µg, 3x group was the only one showing significant increases of NK cells and CD38(+)HLA-DR(+)/CD8(+) T cells, a phenotype associated with increased killing activity in elite controllers. CONCLUSIONS: Anti-Tat immune responses are needed to restore immune homeostasis and effective anti-viral responses capable of attacking the virus reservoir. Thus, Tat immunization represents a promising pathogenesis-driven intervention to intensify HAART efficacy.


Subject(s)
AIDS Vaccines/administration & dosage , AIDS Vaccines/immunology , Acquired Immunodeficiency Syndrome/therapy , Antiretroviral Therapy, Highly Active/methods , HIV Antibodies/blood , Viral Load , tat Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/adverse effects , Acquired Immunodeficiency Syndrome/immunology , Adult , Antibodies, Neutralizing/blood , CD4 Lymphocyte Count , Female , Follow-Up Studies , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Italy , Leukocytes/immunology , Male , Middle Aged , Treatment Outcome , Young Adult
2.
PLoS One ; 7(11): e48781, 2012.
Article in English | MEDLINE | ID: mdl-23152803

ABSTRACT

Use of Env in HIV vaccine development has been disappointing. Here we show that, in the presence of a biologically active Tat subunit vaccine, a trimeric Env protein prevents in monkeys virus spread from the portal of entry to regional lymph nodes. This appears to be due to specific interactions between Tat and Env spikes that form a novel virus entry complex favoring R5 or X4 virus entry and productive infection of dendritic cells (DCs) via an integrin-mediated pathway. These Tat effects do not require Tat-transactivation activity and are blocked by anti-integrin antibodies (Abs). Productive DC infection promoted by Tat is associated with a highly efficient virus transmission to T cells. In the Tat/Env complex the cysteine-rich region of Tat engages the Env V3 loop, whereas the Tat RGD sequence remains free and directs the virus to integrins present on DCs. V2 loop deletion, which unshields the CCR5 binding region of Env, increases Tat/Env complex stability. Of note, binding of Tat to Env abolishes neutralization of Env entry or infection of DCs by anti-HIV sera lacking anti-Tat Abs, which are seldom present in natural infection. This is reversed, and neutralization further enhanced, by HIV sera containing anti-Tat Abs such as those from asymptomatic or Tat-vaccinated patients, or by sera from the Tat/Env vaccinated monkeys. Thus, both anti-Tat and anti-Env Abs are required for efficient HIV neutralization. These data suggest that the Tat/Env interaction increases HIV acquisition and spreading, as a mechanism evolved by the virus to escape anti-Env neutralizing Abs. This may explain the low effectiveness of Env-based vaccines, which are also unlikely to elicit Abs against new Env epitopes exposed by the Tat/Env interaction. As Tat also binds Envs from different clades, new vaccine strategies should exploit the Tat/Env interaction for both preventative and therapeutic interventions.


Subject(s)
Dendritic Cells/virology , HIV Antibodies/metabolism , HIV-1/metabolism , Integrins/metabolism , env Gene Products, Human Immunodeficiency Virus/metabolism , tat Gene Products, Human Immunodeficiency Virus/metabolism , AIDS Vaccines/administration & dosage , AIDS Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Binding Sites , Dendritic Cells/immunology , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp120/metabolism , HIV Infections/immunology , HIV Infections/prevention & control , HIV Infections/transmission , HIV Infections/virology , HIV-1/immunology , Humans , Integrins/immunology , Macaca fascicularis , Male , Molecular Docking Simulation , Neutralization Tests , Oligopeptides/metabolism , Protein Binding , Protein Interaction Domains and Motifs/immunology , Receptors, CCR5/metabolism , Receptors, CXCR4/metabolism , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/immunology , Virus Internalization , Virus Replication , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/immunology , tat Gene Products, Human Immunodeficiency Virus/chemistry , tat Gene Products, Human Immunodeficiency Virus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...