Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 927: 171860, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38518823

ABSTRACT

Safe-and-sustainable-by-design (SSbD) nanomaterials (NMs) or NM-containing products are a priority. Silver (Ag) NMs have a vast array of applications, including biomedical and other products, even as nanopesticides. Thus, their release to the environment is expected to increase. The aim of the present study was to assess the ecotoxicity of the SSbD Ag NM to the soil model species Enchytraeus crypticus (Oligochaeta). The Ag NM tested consists in a SSbD Ag with biomedical applications, a hydroxyethyl cellulose (HEC) coated Ag NMs (AgHEC) and its toxicity was compared to the naked Ag NMs (Ag-Sigma), an Ag-based biomedical product (PLLA-Ag: Poly l-Lactide microfibers doped with Ag), and AgNO3. Effects were assessed both in soil and aqueous media, following the standard OECD guideline in soil (28 days) and the OECD extension (56 days), and short-term pulse (5 days) in aqueous media: reconstituted water (ISO water) and soil:water (S:W) extracts, followed by a 21-days recovery period in soil. Ag materials were thoroughly characterized as synthesized and during the test in media and animals. Results in S:W showed AgHEC was more toxic than Ag-Sigma (ca. 150 times) and PLLA-Ag (ca. 2.5 times), associated with a higher Ag uptake. Higher toxicity was related to a smaller hydrodynamic size and higher suspension stability, which in turn resulted in a higher bioavailability of Ag NMs and released ions, particularly in S:W. Toxicity was correlated with the main physicochemical features, providing useful prediction of AgNMs bioactivity. The ability to test E. crypticus in a range of media with different and/or increasing complexity (water, S:W extracts, soil) provided an excellent source to interpret results and is here recommended.


Subject(s)
Metal Nanoparticles , Oligochaeta , Silver , Soil Pollutants , Soil , Silver/toxicity , Animals , Soil Pollutants/analysis , Oligochaeta/drug effects , Soil/chemistry , Metal Nanoparticles/toxicity , Nanostructures/toxicity , Invertebrates/drug effects
2.
Sci Total Environ ; 913: 169748, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38160813

ABSTRACT

Lipid-based nanoparticles (LNPs) are advanced materials (AdMa), particularly relevant for drug delivery of poorly water-soluble compounds, while also providing protection, stabilization, and controlled release of the drugs/active substances. The toxicological data available often focus on the specific applications of the LNPs-drug tested, with indication of low toxicity. However, the ecotoxicological effects of LNPs are currently unknown. In the present study, we investigated the ecotoxicity of a formulation of Lipid Surfactant Submicron Particles (LSSPs) loaded with melatonin at 1 mg/mL. The LSSPs formulation has been developed to be fully compliant with regulatory for its potential use in the market and all components are food additives. The same formulation without the thickening agent xanthan gum (stabilizer in water phase) designated as LSSP-xg, was also tested. Two soil model invertebrate species were tested in LUFA 2.2 soil: Enchytraeus crypticus (Oligochaeta) and Folsomia candida (Collembola). Effects were assessed based on the OECD standard guideline (28 days) and its extension, the longer-term exposure (56 days). Assessed endpoints were survival, reproduction, and size. LSSPs and LSSP-xg were toxic to E. crypticus and F. candida reducing their survival and reproduction in a dose-dependent way: e.g., 28-day exposure: E. crypticus: LC/EC50 = 30/15 mg LSSPs/kg soil and F. candida LC/EC50 = 55/44 mg LSSPs/kg soil, with similar values for LSSP-xg. Size was also reduced for F. candida but was the least sensitive endpoint. There were no indications that toxicity increased with longer term exposure. The results provide relevant information on ecotoxicity of a AdMa and highlights the need for awareness of the potential risks, even on products and additives usually used in food or cosmetic industry. Further information on single components and on their specific assembly is necessary for the interpretation of results, as it is not fully clear what causes the toxicity in this specific AdMa. This represents a typical challenge for AdMa hazard assessment scenario.


Subject(s)
Arthropods , Melatonin , Oligochaeta , Soil Pollutants , Animals , Melatonin/pharmacology , Surface-Active Agents/toxicity , Soil , Reproduction , Lipoproteins/pharmacology , Water , Soil Pollutants/analysis
3.
PLoS One ; 18(9): e0288737, 2023.
Article in English | MEDLINE | ID: mdl-37713377

ABSTRACT

Toxicity evaluation of engineered nanomaterials is challenging due to the ever increasing number of materials and because nanomaterials (NMs) frequently interfere with commonly used assays. Hence, there is a need for robust, high-throughput assays with which to assess their hazard potential. The present study aimed at evaluating the applicability of a genotoxicity assay based on the immunostaining and foci counting of the DNA repair protein 53BP1 (p53-binding protein 1), in a high-throughput format, for NM genotoxicity assessment. For benchmarking purposes, we first applied the assay to a set of eight known genotoxic agents, as well as X-ray irradiation (1 Gy). Then, a panel of NMs and nanobiomaterials (NBMs) was evaluated with respect to their impact on cell viability and genotoxicity, and to their potential to induce reactive oxygen species (ROS) production. The genotoxicity recorded using the 53BP1 assay was confirmed using the micronucleus assay, also scored via automated (high-throughput) microscopy. The 53BP1 assay successfully identified genotoxic compounds on the HCT116 human intestinal cell line. None of the tested NMs showed any genotoxicity using the 53BP1 assay, except the positive control consisting in (CoO)(NiO) NMs, while only TiO2 NMs showed positive outcome in the micronucleus assay. Only Fe3O4 NMs caused significant elevation of ROS, not correlated to DNA damage. Therefore, owing to its adequate predictivity of the genotoxicity of most of the tested benchmark substance and its ease of implementation in a high throughput format, the 53BP1 assay could be proposed as a complementary high-throughput screening genotoxicity assay, in the context of the development of New Approach Methodologies.


Subject(s)
Nanostructures , Tumor Suppressor Protein p53 , Humans , Reactive Oxygen Species , Benchmarking , DNA Damage
4.
Environ Pollut ; 328: 121669, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37080512

ABSTRACT

Nanoemulsions (NEs) have been extensively studied as carriers for drug delivery, since these provide a good alternative to the existing non-nano systems, while promoting their target delivery and controlled release. NEs are considered safe drug carriers from a pre-clinical perspective, but there is currently no information on their ecotoxicological effects. In the present study we investigated the toxicity of a NE material (lecithin, sunflower oil, borate buffer) designed to be used as a liposomal excipient for eye drops, further referred to as (Lipid Particle:LP) LP_Eye and its dispersant (borate buffer) (LP_Eye disp.). Effects were assessed using two model species in soil ecotoxicology in LUFA 2.2 soil: Enchytraeus crypticus (Oligochaeta) and Folsomia candida (Collembola), based on the OECD standard guideline (28 days) and its extension, a longer-term exposure (56 days). The endpoints evaluated included survival, reproduction, and size. LP_Eye and LP_Eye disp. were toxic to E. crypticus and F. candida, affecting all measured endpoints. The toxicity of LP_Eye in E. crypticus seemed to be induced by the dispersant, whereas for F. candida, more sensitive, this was less explanatory. There were no indications that toxicity increased with longer exposure. Current results provide ecotoxicological data for a group of NMs that was absent, revealing toxicity to relevant environmental species. Indications were that the dispersant contributed to most of the observed effects, thus there is room to improve the formulation and achieve lower environmental impact.


Subject(s)
Arthropods , Coleoptera , Oligochaeta , Soil Pollutants , Animals , Borates , Ecotoxicology , Soil , Soil Pollutants/analysis , Reproduction
5.
Front Bioeng Biotechnol ; 10: 1083232, 2022.
Article in English | MEDLINE | ID: mdl-36578508

ABSTRACT

Silver (Ag) is known to possess antimicrobial properties which is commonly attributed to soluble Ag ions. Here, we showed that Ag nanoparticles (NPs) potently inhibited SARS-CoV-2 infection using two different pseudovirus neutralization assays. We also evaluated a set of Ag nanoparticles of different sizes with varying surface properties, including polyvinylpyrrolidone (PVP)-coated and poly (ethylene glycol) (PEG)-modified Ag nanoparticles, and found that only the bare (unmodified) nanoparticles were able to prevent virus infection. For comparison, TiO2 nanoparticles failed to intercept the virus. Proteins and lipids may adsorb to nanoparticles forming a so-called bio-corona; however, Ag nanoparticles pre-incubated with pulmonary surfactant retained their ability to block virus infection in the present model. Furthermore, the secondary structure of the spike protein of SARS-CoV-2 was perturbed by the Ag nanoparticles, but not by the ionic control (AgNO3) nor by the TiO2 nanoparticles. Finally, Ag nanoparticles were shown to be non-cytotoxic towards the human lung epithelial cell line BEAS-2B and this was confirmed by using primary human nasal epithelial cells. These results further support that Ag nanoparticles may find use as anti-viral agents.

6.
Pharmaceutics ; 14(12)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36559302

ABSTRACT

Magnetic nanoparticles (MNPs) present outstanding properties making them suitable as therapeutic agents for hyperthermia treatments. Since the main safety concerns of MNPs are represented by their inherent instability in a biological medium, strategies to both achieve long-term stability and monitor hazardous MNP degradation are needed. We combined a dynamic approach relying on flow field flow fractionation (FFF)-multidetection with conventional techniques to explore frame-by-frame changes of MNPs injected in simulated biological medium, hypothesize the interaction mechanism they are subject to when surrounded by a saline, protein-rich environment, and understand their behaviour at the most critical point of intravenous administration. In the first moments of MNPs administration in the patient, MNPs change their surrounding from a favorable to an unfavorable medium, i.e., a complex biological fluid such as blood; the particles evolve from a synthetic identity to a biological identity, a transition that needs to be carefully monitored. The dynamic approach presented herein represents an optimal alternative to conventional batch techniques that can monitor only size, shape, surface charge, and aggregation phenomena as an averaged information, given that they cannot resolve different populations present in the sample and cannot give accurate information about the evolution or temporary instability of MNPs. The designed FFF method equipped with a multidetection system enabled the separation of the particle populations providing selective information on their morphological evolution and on nanoparticle-proteins interaction in the very first steps of infusion. Results showed that in a dynamic biological setting and following interaction with serum albumin, PP-MNPs retain their colloidal properties, supporting their safety profile for intravenous administration.

7.
Nanomaterials (Basel) ; 12(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36432346

ABSTRACT

Developments in the nanotechnology area occur ensuring compliance with regulatory requirements, not only in terms of safety requirements, but also to meet sustainability goals. Hence, safer and sustainable-by-design (SSbD) materials are also aimed for during developmental process. Similar to with any new materials their safety must be assessed. Nanobiomaterials can offer large advantages in the biomedical field, in areas such as tissue repair and regeneration, cancer therapy, etc. For example, although hydroxyapatite-based nanomaterials (nHA) are among the most studied biomaterials, its ecotoxicological effects are mostly unknown. In the present study we investigated the toxicity of seven nHA-based materials, covering both different biomedical applications, e.g., iron-doped hydroxyapatite designed for theragnostic applications), hybrid collagen/hydroxyapatite composites, designed for bone tissue regeneration, and SSbD alternative materials such as titanium-doped hydroxyapatite/alginate composite, designed as sunscreen. The effects were assessed using the soil model Enchytraeus crypticus (Oligochaeta) in the natural standard LUFA 2.2 soil. The assessed endpoints included the 2, 3 and 4 days avoidance behavior (short-term), 28 days survival, size and reproduction (long term based on the OECD standard reproduction test), and 56 days survival and reproduction (longer-term OECD extension). Although overall results showed little to no toxicity among the tested nHA, there was a significant decrease in animals' size for Ti-containing nHA. Moreover, there was a tendency for higher toxicity at the lowest concentrations (i.e., 100 mg/kg). This requires further investigation to ensure safety.

8.
Toxics ; 10(11)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36422912

ABSTRACT

Hydroxyapatite (HA) is a calcium phosphate used in many fields, including biomedical applications. In particular, ion-doped HA nanomaterials (nHA) are developed for their increased bioactivity, particularly in the fields of regenerative medicine and nanomedicine. In this study, we assessed the ecotoxicological impact of five nHA materials: a synthesized calcium hydroxyapatite (CaP-HA), superparamagnetic iron-doped hydroxyapatite (Fe-HA), titanium-doped hydroxyapatite (Ti-HA), alginate/titanium-doped hydroxyapatite hybrid composite (Ti-HA-Alg), and a commercial HA. The soil ecotoxicology model species Folsomia candida (Collembola) was used, and besides the standard reproduction test (28 days), an extension to the standard for one more generation was performed (56 days). Assessed endpoints included the standard survival and reproduction, and additionally, growth. Exposure via the standard (28 days) did not cause toxicity, but reproduction increased in commercial HA (significantly at 320 mg HA/kg) whereas via the extension (56 days) it decreased in all tested concentrations. Juveniles' size (56 days) was reduced in all tested nHA materials, except commercial HA. nHA materials seem to trigger a compromise between reproduction and growth. Long-term effects could not be predicted based on the standard shorter exposure; hence, the testing of at least two generations (56 days) is recommended to assess the toxicity of nanomaterials, particularly in F. candida. Further, we found that the inclusion of size as additional endpoint is highly relevant.

9.
Colloids Surf B Biointerfaces ; 207: 112037, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34416445

ABSTRACT

Biocompatible coating based on bovine serum albumin (BSA) was applied on two different TiO2 nanoparticles (aeroxide P25 and food grade E171) to investigate properties and stability of resulting TiO2@BSA composites, under the final perspective to create a "Safe-by-Design" coating, able to uniform, level off and mitigate surface chemistry related phenomena, as naturally occurring when nano-phases come in touch with proteins enriched biological fluids. The first step towards validating the proposed approach is a detailed characterization of surface chemistry with the quantification of amount and stability of BSA coating deposited on nanoparticles' surfaces. At this purpose, we implemented an orthogonal multi-techniques characterization platform, providing important information on colloidal behavior, particle size distribution and BSA-coating structure of investigated TiO2 systems. Specifically, the proposed orthogonal approach enabled the quantitative determination of bound and free (not adsorbed) BSA, a key aspect for the design of intentionally BSA coated nano-structures, in nanomedicine and, overall, for the control of nano-surface reactivity. In fact, the BSA-coating strategy developed and the orthogonal characterisation performed can be extended to different designed nanomaterials in order to further investigate the protein-corona formation and promote the implementation of BSA engineered coating as a strategy to harmonize the surface reactivity and minimize the biological impact.


Subject(s)
Nanoparticles , Protein Corona , Nanomedicine , Serum Albumin, Bovine , Surface Properties , Titanium
10.
NanoImpact ; 22: 100313, 2021 04.
Article in English | MEDLINE | ID: mdl-35559970

ABSTRACT

Copper oxide nanoparticles (CuO NPs) have previously been shown to cause dose-dependent pulmonary toxicity following inhalation. Here, CuO NPs (10 nm), coated with polyethylenimine (PEI) or ascorbate (ASC) resulting in positively or negatively charged NPs, respectively, were evaluated. Rats were exposed nose-only to similar exposure dose levels of ASC or PEI coated CuO NPs for 5 consecutive days. On day 6 and day 27 post-exposure, pulmonary toxicity markers in bronchoalveolar lavage fluid (BALF), lung histopathology and genome-wide transcriptomic changes in lungs, were assessed. BALF analyses showed a dose-dependent pulmonary inflammation and cell damage, which was supported by the lung histopathological findings of hypertrophy/hyperplasia of bronchiolar and alveolar epithelium, interstitial and alveolar inflammation, and paracortical histiocytosis in mediastinal lymph nodes for both types of CuO NPs. Transcriptomics analysis showed that pathways related to inflammation and cell proliferation were significantly activated. Additionally, we found evidence for the dysregulation of drug metabolism-related genes, especially in rats exposed to ASC-coated CuO NPs. Overall, no differences in the type of toxic effects and potency between the two surface coatings could be established, except with respect to the (regional) dose that initiates bronchiolar and alveolar hypertrophy. This disproves our hypothesis that differences in surface coatings affect the pulmonary toxicity of CuO NPs.


Subject(s)
Lung Diseases , Nanoparticles , Animals , Copper/toxicity , Hypertrophy , Inflammation , Inhalation Exposure/adverse effects , Nanoparticles/toxicity , Oxides , Rats , Transcriptome
11.
Nanotoxicology ; 15(1): 21-34, 2021 02.
Article in English | MEDLINE | ID: mdl-33100120

ABSTRACT

Dose-response by in vitro testing is only valid if the fraction of the particle dose that deposits onto adherent cells is known. Modeling tools such as the 'distorted grid' (DG) code are common practices to predict that fraction. As another challenge, workflow efficiency depends on parallelized sample preparation, for which freeze-thaw protocols have been explored earlier, but not their implications on dosimetry. Here we assess the sensitivity of the DG code toward freeze-thaw protocols and variations in user-defined parameters, including the estimation of particle-cell affinity and determination of agglomerate size, which we measure by DLS or AUC. We challenge the sensitivity by materials of varying composition, surface functionalization, and size (TiO2, CeO2, BaSO4, 2x Ag, 3x SiO2). We found that the average effective density is robust, but the dose predictions by different approaches varied typically 2-fold and up to 10-fold; this uncertainty translates directly into the uncertainty of no-effect-concentrations. The use of standardized dispersion protocols increases the uncertainty in doses. The choice of a measurement method and minor details of the particle size distribution strongly influence the modeled dosimetry. Uncertainty is high for very well dispersed nanomaterials; since then, the assumed affinity of particles to cells has a decisive influence. Against this background, the modulation of deposited dose by freeze-thaw protocols is a minor factor that can be controlled by aligning the protocols of sample preparation. However, even then, the uncertainty of deposited doses must be considered when comparing the in vitro toxicity of different nanomaterials.


Subject(s)
Nanostructures/chemistry , Silicon Dioxide/chemistry , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Freezing , Surface Properties
12.
Nanotoxicology ; 14(4): 433-452, 2020 05.
Article in English | MEDLINE | ID: mdl-31726913

ABSTRACT

Length and aspect ratio represent important toxicity determinants of fibrous nanomaterials. We have previously shown that anatase TiO2 nanofibers (TiO2 NF) cause a dose-dependent decrease of cell viability as well as the loss of epithelial barrier integrity in polarized airway cell monolayers. Herein we have investigated the impact of fiber shortening, obtained by ball-milling, on the biological effects of TiO2 NF of industrial origin. Long TiO2 NF (L-TiO2 NF) were more cytotoxic than their shortened counterparts (S-TiO2 NF) toward alveolar A549 cells and bronchial 16HBE cells. Moreover, L-TiO2 NF increased the permeability of 16HBE monolayers and perturbed the distribution of tight-junction proteins, an effect also mitigated by fiber shortening. Raw264.7 macrophages efficiently internalized shortened but not long NF, which caused cell stretching and deformation. Compared with L-TiO2 NF, S-TiO2 NF triggered a more evident macrophage activation, an effect suppressed by the phagocytosis inhibitor cytochalasin B. Conversely, a significant increase of inflammatory markers was detected in either the lungs or the peritoneal cavity of mice exposed to L-TiO2 NF but not to S-TiO2 NF, suggesting that short-term macrophage activation in vitro may not be always a reliable indicator of persistent inflammation in vivo. It is concluded that fiber shortening mitigates NF detrimental effects on cell viability and epithelial barrier competence in vitro as well as inflammation development in vivo. These data suggest that fiber shortening may represent an effective safe-by-design strategy for mitigating TiO2 NF toxic effects.


Subject(s)
Macrophage Activation/drug effects , Macrophages/drug effects , Nanofibers/chemistry , Nanofibers/toxicity , Titanium/chemistry , Titanium/toxicity , A549 Cells , Animals , Biomarkers/metabolism , Cell Survival/drug effects , Cytokines/metabolism , Epithelial Cells/drug effects , Epithelial Cells/immunology , Epithelial Cells/pathology , Humans , Inflammation , Macrophages/immunology , Macrophages/pathology , Mice , Particle Size , Phagocytosis/drug effects , RAW 264.7 Cells , Surface Properties
13.
Int J Mol Sci ; 19(3)2018 Feb 25.
Article in English | MEDLINE | ID: mdl-29495342

ABSTRACT

Hazard identification is the key step in risk assessment and management of manufactured nanomaterials (NM). However, the rapid commercialisation of nano-enabled products continues to out-pace the development of a prudent risk management mechanism that is widely accepted by the scientific community and enforced by regulators. However, a growing body of academic literature is developing promising quantitative methods. Two approaches have gained significant currency. Bayesian networks (BN) are a probabilistic, machine learning approach while the weight of evidence (WoE) statistical framework is based on expert elicitation. This comparative study investigates the efficacy of quantitative WoE and Bayesian methodologies in ranking the potential hazard of metal and metal-oxide NMs-TiO2, Ag, and ZnO. This research finds that hazard ranking is consistent for both risk assessment approaches. The BN and WoE models both utilize physico-chemical, toxicological, and study type data to infer the hazard potential. The BN exhibits more stability when the models are perturbed with new data. The BN has the significant advantage of self-learning with new data; however, this assumes all input data is equally valid. This research finds that a combination of WoE that would rank input data along with the BN is the optimal hazard assessment framework.


Subject(s)
Hazardous Substances/analysis , Hazardous Substances/chemistry , Nanostructures/chemistry , Risk Assessment/methods , Algorithms , Bayes Theorem , Chemical Phenomena , Models, Theoretical , Monte Carlo Method , Reproducibility of Results , Risk Management/methods
14.
R Soc Open Sci ; 5(1): 171113, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29410826

ABSTRACT

Silver nanoparticle-based antimicrobials can promote a long lasting bactericidal effect without detrimental toxic side effects. However, there is not a clear and complete protocol to define and relate the properties of the particles (size, shape, surface charge, ionic content) with their specific activity. In this paper, we propose an effective multi-step approach for the identification of a 'purpose-specific active applicability window' to maximize the antimicrobial activity of medical devices containing silver nanoparticles (Ag NPs) (such as surface coaters), minimizing any consequent risk for human health (safety by design strategy). The antimicrobial activity and the cellular toxicity of four types of Ag NPs, differing in their coating composition and concentration have been quantified. Through the implementation of flow-field flow fractionation, Ag NPs have been characterized in terms of metal release, size and shape. The particles are fractionated in the process while being left unmodified, allowing for the identification of biological particle-specific contribution. Toxicity and inflammatory response in vitro have been assessed on human skin models, while antimicrobial activity has been monitored with both non-pathogenic and pathogenic Escherichia coli. The main benefit associated with such approach is the comprehensive assessment of the maximal effectiveness of candidate nanomaterials, while simultaneously indexing their properties against their safety.

15.
Environ Sci Technol ; 52(3): 1514-1524, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29376638

ABSTRACT

Nanoenabled products (NEPs) have numerous outdoor uses in construction, transportation or consumer scenarios, and there is evidence that their fragments are released in the environment at low rates. We hypothesized that the lower surface availability of NEPs fragment reduced their environmental effects with respect to pristine nanomaterials. This hypothesis was explored by testing fragments generated by intentional micronisation ("the SUN approach"; Nowack et al. Meeting the Needs for Released Nanomaterials Required for Further Testing: The SUN Approach. Environmental Science & Technology, 2016 (50), 2747). The NEPs were composed of four matrices (epoxy, polyolefin, polyoxymethylene, and cement) with up to 5% content of three nanomaterials (carbon nanotubes, iron oxide, and organic pigment). Regardless of the type of nanomaterial or matrix used, it was observed that nanomaterials were only partially exposed at the NEP fragment surface, indicating that mostly the intrinsic and extrinsic properties of the matrix drove the NEP fragment toxicity. Ecotoxicity in multiple assays was done covering relevant media from terrestrial to aquatic, including sewage treatment plant (biological activity), soil worms (Enchytraeus crypticus), and fish (zebrafish embryo and larvae and trout cell lines). We designed the studies to explore the possible modulation of ecotoxicity by nanomaterial additives in plastics/polymer/cement, finding none. The results support NEPs grouping by the matrix material regarding ecotoxicological effect during the use phase. Furthermore, control results on nanomaterial-free polymer fragments representing microplastic had no significant adverse effects up to the highest concentration tested.


Subject(s)
Nanostructures , Nanotubes, Carbon , Animals , Ecotoxicology , Environment , Plastics
16.
Chemosphere ; 196: 482-493, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29324388

ABSTRACT

The rapid dissolution of copper oxide (CuO) nanoparticles (NPs) with release of ions is thought to be one of the main factors modulating their toxicity. Here we assessed the cytotoxicity of a panel of CuO NPs (12 nm ±â€¯4 nm) with different surface modifications, i.e., anionic sodium citrate (CIT) and sodium ascorbate (ASC), neutral polyvinylpyrrolidone (PVP), and cationic polyethylenimine (PEI), versus the pristine (uncoated) NPs, using a murine macrophage cell line (RAW264.7). Cytotoxicity, reactive oxygen species (ROS) production, and cellular uptake were assessed. The cytotoxicity results were analyzed by the benchmark dose (BMD) method and the NPs were ranked based on BMD20 values. The PEI-coated NPs were found to be the most cytotoxic. Despite the different properties of the coating agents, NP dissolution in cell medium was only marginally affected by surface modification. Furthermore, CuCl2 (used as an ion control) elicited significantly less cytotoxicity when compared to the CuO NPs. We also observed that the antioxidant, N-acetylcysteine, failed to protect against the cytotoxicity of the uncoated CuO NPs. Indeed, the toxicity of the surface-modified CuO NPs was not directly linked to particle dissolution and subsequent Cu burden in cells, nor to cellular ROS production, although CuO-ASC NPs, which were found to be the least cytotoxic, yielded lower levels of ROS in comparison to pristine NPs. Hierarchical cluster analysis suggested, instead, that the toxicity in the current in vitro model could be explained by synergistic interactions between the NPs, their dissolution, and the toxicity of the coating agents.


Subject(s)
Cell Death/drug effects , Copper/toxicity , Macrophages/metabolism , Metal Nanoparticles/toxicity , Animals , Antioxidants , Cell Line , Copper/chemistry , Copper/pharmacokinetics , Metal Nanoparticles/chemistry , Mice , Reactive Oxygen Species/metabolism , Solubility , Surface Properties
17.
RSC Adv ; 8(70): 40369-40377, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-35558206

ABSTRACT

Titania (TiO2) nanoparticles were surface modified using silica and citrate to implement a 'safe-by-design' approach for managing potential toxicity of titania nanoparticles by controlling surface redox reactivity. DLS and zeta-potential analyses confirmed the surface modification, and electron microscopy and surface area measurements demonstrated nanoscale dimensions of the particles. Electron paramagnetic resonance (EPR) was used to determine the exogenous generation of reactive oxygen species (ROS). All the produced spray dried nanotitania lowered levels of ROS when compared to the corresponding dispersed nanotitania, suggesting that the spray drying process is an appropriate design strategy for the control of nano TiO2 ROS reactivity. The modification of nanotitania with silica and with citrate resulted in increased levels of ROS generation in exogenous measurements, including photoexcitation for 60 minutes. The dichlorodihydrofluorescein (DCFH) assay of dose-dependent production of oxidative stress, generated by pristine and modified nanotitania in macrophages and alveolar epithelial cells, found no significant change in toxicity originating from the generation of reactive oxygen species. Our findings show that there is no direct correlation between the photocatalytic activity of nanotitania and its oxidative stress-mediated potential toxicity, and it is possible to improve the former, for example adding silica as a modifying agent, without altering the cell redox equilibrium.

18.
Front Immunol ; 8: 866, 2017.
Article in English | MEDLINE | ID: mdl-28824614

ABSTRACT

It is known that the adsorption of bioactive molecules provides engineered nanoparticles (NPs) with novel biological activities. However, the biological effects of the adsorbed molecules may also be modified by the interaction with NP. Bacterial lipopolysaccharide (LPS), a powerful pro-inflammatory compound, is a common environmental contaminant and is present in several body compartments such as the gut. We recently observed that the co-incubation of LPS with TiO2 NPs markedly potentiates its pro-inflammatory effects on murine macrophages, suggesting that, when included in a NP bio-corona, LPS activity is enhanced. To distinguish the effects of adsorbed LPS from those of the free endotoxin, a pellet fraction, denominated P25/LPS, was isolated by centrifugation from a mixture of P25 TiO2 NP (128 µg/ml) and LPS (10 ng/ml) in the presence of fetal bovine serum. Western blot analysis of the pellet eluate indicated that the P25/LPS fraction contained, besides proteins, also LPS, pointing to the presence of LPS-doped NP. The effects of adsorbed or free LPS were then compared in Raw264.7 murine macrophages. RT-PCR was used to evaluate the induction of cytokine genes, whereas active, phosphorylated isoforms of proteins involved in signaling pathways were assessed with western blot. At a nominal LPS concentration of 40 pg/ml, P25/LPS induced the expression of both NF-κB and IRF3-dependent cytokines at levels comparable with those observed with free LPS (10 ng/ml), although with different time courses. Moreover, compared to free LPS, P25/LPS caused a more sustained phosphorylation of p38 MAPK and a more prolonged induction of STAT1-dependent genes. Cytochalasin B partially inhibited the induction of Tnfa by P25/LPS, but not by free LPS, and suppressed the induction of IRF3-dependent genes by either P25/LPS or free LPS. These data suggest that, when included in the bio-corona of TiO2 NP, LPS exhibits enhanced and time-shifted pro-inflammatory effects. Thus, in assessing the hazard of NP in real life, the enhanced effects of adsorbed bioactive molecules should be taken into account.

19.
Nanoscale Res Lett ; 11(1): 503, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27848238

ABSTRACT

While control banding has been identified as a suitable framework for the evaluation and the determination of potential human health risks associated with exposure to nanomaterials (NMs), the approach currently lacks any implementation that enjoys widespread support. Large inconsistencies in characterisation data, toxicological measurements and exposure scenarios make it difficult to map and compare the risk associated with NMs based on physicochemical data, concentration and exposure route. Here we demonstrate the use of Bayesian networks as a reliable tool for NM risk estimation. This tool is tractable, accessible and scalable. Most importantly, it captures a broad span of data types, from complete, high quality data sets through to data sets with missing data and/or values with a relatively high spread of probability distribution. The tool is able to learn iteratively in order to further refine forecasts as the quality of data available improves. We demonstrate how this risk measurement approach works on NMs with varying degrees of risk potential, namely, carbon nanotubes, silver and titanium dioxide. The results afford even non-experts an accurate picture of the occupational risk probabilities associated with these NMs and, in doing so, demonstrated how NM risk can be evaluated into a tractable, quantitative risk comparator.

20.
PLoS One ; 11(3): e0151365, 2016.
Article in English | MEDLINE | ID: mdl-26999274

ABSTRACT

Titanium dioxide (TiO2) nanofibres are a novel fibrous nanomaterial with increasing applications in a variety of fields. While the biological effects of TiO2 nanoparticles have been extensively studied, the toxicological characterization of TiO2 nanofibres is far from being complete. In this study, we evaluated the toxicity of commercially available anatase TiO2 nanofibres using TiO2 nanoparticles (NP) and crocidolite asbestos as non-fibrous or fibrous benchmark materials. The evaluated endpoints were cell viability, haemolysis, macrophage activation, trans-epithelial electrical resistance (an indicator of the epithelial barrier competence), ROS production and oxidative stress as well as the morphology of exposed cells. The results showed that TiO2 nanofibres caused a cell-specific, dose-dependent decrease of cell viability, with larger effects on alveolar epithelial cells than on macrophages. The observed effects were comparable to those of crocidolite, while TiO2 NP did not decrease cell viability. TiO2 nanofibres were also found endowed with a marked haemolytic activity, at levels significantly higher than those observed with TiO2 nanoparticles or crocidolite. Moreover, TiO2 nanofibres and crocidolite, but not TiO2 nanoparticles, caused a significant decrease of the trans-epithelial electrical resistance of airway cell monolayers. SEM images demonstrated that the interaction with nanofibres and crocidolite caused cell shape perturbation with the longest fibres incompletely or not phagocytosed. The expression of several pro-inflammatory markers, such as NO production and the induction of Nos2 and Ptgs2, was significantly increased by TiO2 nanofibres, as well as by TiO2 nanoparticles and crocidolite. This study indicates that TiO2 nanofibres had significant toxic effects and, for most endpoints with the exception of pro-inflammatory changes, are more bio-active than TiO2 nanoparticles, showing the relevance of shape in determining the toxicity of nanomaterials. Given that several toxic effects of TiO2 nanofibres appear comparable to those observed with crocidolite, the possibility that they exert length dependent toxicity in vivo seems worthy of further investigation.


Subject(s)
Nanofibers/chemistry , Nanofibers/toxicity , Titanium/chemistry , Titanium/toxicity , Animals , Biomarkers/metabolism , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Glutathione/metabolism , Hemolysis , Humans , Inflammation Mediators/metabolism , Lipid Peroxidation/drug effects , Macrophages/drug effects , Macrophages/metabolism , Macrophages/ultrastructure , Mice , Nanofibers/ultrastructure , Oxidative Stress , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...