Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 12(6)2020 Jun 06.
Article in English | MEDLINE | ID: mdl-32517259

ABSTRACT

Background: There is no standard chemotherapy for refractory or relapsing malignant pleural mesothelioma (MPM). Our previous reports nevertheless indicated that a combination of an anthracycline (doxorubicin) and a lysine deacetylase inhibitor (valproic acid, VPA) synergize to induce the apoptosis of MPM cells and reduce tumor growth in mouse models. A Phase I/II clinical trial indicated that this regimen is a promising therapeutic option for a proportion of MPM patients. Methods: The transcriptomes of mesothelioma cells were compared after Illumina HiSeq 4000 sequencing. The expression of differentially expressed genes was inhibited by RNA interference. Apoptosis was determined by cell cycle analysis and Annexin V/7-AAD labeling. Protein expression was assessed by immunoblotting. Preclinical efficacy was evaluated in BALB/c and NOD-SCID mice. Results: To understand the mechanisms involved in chemoresistance, the transcriptomes of two MPM cell lines displaying different responses to VPA-doxorubicin were compared. Among the differentially expressed genes, transforming growth factor alpha (TGFα) was associated with resistance to this regimen. The silencing of TGFα by RNA interference correlated with a significant increase in apoptosis, whereas the overexpression of TGFα desensitized MPM cells to the apoptosis induced by VPA and doxorubicin. The multi-targeted inhibition of histone deacetylase (HDAC), HER2 and TGFα receptor (epidermal growth factor receptor/EGFR) improved treatment efficacy in vitro and reduced tumor growth in two MPM mouse models. Finally, TGFα expression but not EGFR correlated with patient survival. Conclusions: Our data show that TGFα but not its receptor EGFR is a key factor in resistance to MPM chemotherapy. This observation may contribute to casting light on the promising but still controversial role of EGFR signaling in MPM therapy.

2.
Lung Cancer ; 81(3): 311-318, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23790315

ABSTRACT

Malignant pleural mesothelioma (MPM) is an almost invariably fatal cancer of the pleura due to asbestos exposure. Increasing evidence indicates that unresponsiveness to chemotherapy is due to epigenetic errors leading to inadequate gene expression in tumor cells. The availability of compounds that modulate epigenetic modifications, such as histone acetylation or DNA methylation, offers new prospects for treatment of MPM. Here, we review latest findings on epigenetics in mesothelioma and present novel strategies for promising epigenetic therapies.


Subject(s)
Epigenesis, Genetic , Lung Neoplasms/genetics , Mesothelioma/genetics , Pleural Neoplasms/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Transformation, Neoplastic/genetics , Clinical Trials as Topic , DNA (Cytosine-5-)-Methyltransferases/antagonists & inhibitors , Epigenesis, Genetic/drug effects , Epigenomics , Gene Expression Regulation, Neoplastic/drug effects , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Humans , Lung Neoplasms/drug therapy , Mesothelioma/drug therapy , Mesothelioma, Malignant
SELECTION OF CITATIONS
SEARCH DETAIL
...